Skip to main content
Log in

Studying the effects of severe aerosol pollution of the atmosphere on the dynamics of cumulonimbus cloud charge structure by numerical modeling

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Studied are the effects of severe aerosol pollution of the atmosphere on the parameters of a cumulonimbus cloud (including its charge structure) and on precipitation. Considered is the example of the cloud that developed on May 11, 2009 near the town of Kharagpur (India) under conditions of severe aerosol pollution of the atmosphere due to dust transport from the desert. The in situ observations of the evolution of the cumulonimbus cloud of large vertical and horizontal extent and of its electric conditions were carried out on that day. It is found that the distribution of electric charges in the cloud was characterized by inverted polarity (i.e., the main positive charge is in the bottom of the cloud and the negative one is in the upper part of the cloud that contradicts usually observed cases). Using the small-dimension numerical model conducted are numerical experiments on the simulation of aerosol effects produced on the evolution of dynamic, microphysical, and electric structure of the cloud under study, namely, the cloud development under background conditions and in case of high aerosol concentration. It is assumed that aerosol particles possess ice-forming properties. It is obtained that the dynamic, microphysical, and electric structures of the cloud are significantly transformed under the influence of high aerosol concentrations; precipitation generation also significantly intensifies; polarity in the distribution of electric charge varies that agrees with the data of in situ observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. A. Dovgalyuk, N. E. Veremei, and A. A. Sin’kevich, The Use of One-and-half-dimensional Model for Solving Fundamental and Applied Problems of the Cloud Physics (Asterion, St. Petersburg, 2007) [in Russian].

    Google Scholar 

  2. Yu. A. Dovgalyuk, N. E. Veremei, and A. A. Sin’kevich, The Use of One-and-half-dimensional Model for Solving Fundamental and Applied Problems of the Cloud Physics, 2nd ed. (Mobi Dik, St. Petersburg, 2013) [in Russian].

    Google Scholar 

  3. Yu. A. Dovgalyuk and L. S. Ivlev, Physics of Water and Other Atmospheric Aerosols (St. Petersburg State Univ., St. Petersburg, 1998) [in Russian].

    Google Scholar 

  4. Yu. A. Dovgalyuk, A. A. Sin’kevich, V. D. Stepanenko, et al., “On the Use of Numerical Model of a Convective Cloud for Assessing Aerosol Pollution of Underlying Surface in Case of Accidents at Nuclear Power Plants,” in Problems of Physics of Atmospheric Boundary Layer and Air Pollution (To the 80 th Birthday of Prof. M.E. Berlyand) (Gidrometeoizdat, St. Petersburg, 2002) [in Russian].

    Google Scholar 

  5. S. E. Drozdetskii, V. I. Kubrin, V. D. Stepanenko, et al., The System for Active Protection of Population against Radioactive Emissions from Nuclear Objects (As Applied to LNPP in Sosnovyi Bor). Avant-project (KomTekhnika, St. Petersburg, 1998) [in Russian].

    Google Scholar 

  6. V. E. Zuev and M. V. Kabanov, Atmospheric Aerosol Optics (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  7. V. E. Zuev and G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  8. L. S. Ivlev, Chemical Composition and Structure of Atmospheric Aerosol (LGU, Leningrad, 1982) [in Russian].

    Google Scholar 

  9. K. Ya. Kondrat’ev and D. V. Pozdnyakov, Aerosol Models of the Atmosphere (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  10. T. V. Kraus, A. A. Sin’kevich, N. E. Veremei, et al., “Study of the Development of an Extremely High Cumulonimbus Cloud (Andhra Pradesh, India, September 28, 2004),” Meteorol. Gidrol., No. 1 (2007) [Russ. Meteorol. Hydrol., No. 1, 32 (2007)].

    Google Scholar 

  11. T. V. Kraus, A. A. Sin’kevich, N. E. Veremei, et al., “Complex Study of Characteristics of a Cb Cloud Developing over the Arabian Peninsula under Conditions of High Dew Point Deficit in the Atmosphere, Part 2: Analysis of the Meteosat Data,” Meteorol. Gidrol., No. 3 (2011) [Russ. Meteorol. Hydrol., No. 3, 36 (2011)].

    Google Scholar 

  12. Yu. F. Ponomarev and A. A. Sin’kevich, “Electrification of Convective Clouds over Northwestern Russia,” Meteorol. Gidrol., No. 6 (1997) [Russ. Meteorol. Hydrol., No. 6 (1997)].

    Google Scholar 

  13. A. A. Sin’kevich, Convective Clouds in the Northwest of Russia (Gidrometeoizdat, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  14. A. A. Sin’kevich and Yu. A. Dovgalyuk, “Corona Discharge in Clouds,” Radiofizika, No. 11–12, 56 (2013) [Radiophysics and Quantum Electronics, No. 11, 56 (2013)].

    Google Scholar 

  15. A. A. Sin’kevich, T. V. Kraus, V. D. Stepanenko, et al., “Study of Dynamics of the Cumulonimbus Anvil of Large Vertical Extent,” Meteorol. Gidrol., No. 12 (2009) [Russ. Meteorol. Hydrol., No. 12, 34 (2009)].

    Google Scholar 

  16. N. S. Shishkin, Clouds, Precipitation, and Thunderstorm Electricity (Gidrometeoizdat, Leningrad, 1964) [in Russian].

    Google Scholar 

  17. A. S. Ackerman, O. B. Toon, J. P. J. Taytor, et al., “Effects of Aero sols on Cloud Albedo: Evaluation of Twomey’s Parameterization of Cloud Susceptibilty Using Measurements of Ship Tracks,” J. Atmos. Sci., 57 (2000).

    Google Scholar 

  18. M. O. Andreae, D. Rosenfeld, P. Artaxo, et al., “Smoking Rain Clouds over the Amazon,” Science, 303 (2004).

    Google Scholar 

  19. T. L. Bell, D. Rosenfeld, K.-M. Kim, et al., “Midweek Increase in US Summer Rain and Storm Heights Suggests Air Pollution Invigorates Rainstorms,” J. Geophys. Res., No. D2, 113 (2008).

    Google Scholar 

  20. R. D. Borys, D. H. Lowenthal, S. A. Cohn, and W. O. J. Brown, “Mountaintop and Radar Measurements of Anthropogenic Aerosol Effects on Snow Growth and Snow Rate,” Geophys. Res. Lett., No. 10, 30 (2003).

    Google Scholar 

  21. R. D. Borys, D. H. Lowenthal, and D. L. Mitchell, “The Retationship among Cloud Phystcs, Chemistry and Precipitation Rate in Cold Mountain Clouds,” Atmos. Environ., 34 (2000).

    Google Scholar 

  22. L. D. Carey and S. A. Rutledge, “Characteristics of Cloud-to-ground Lightning in Severe and Nonsevere Storms over the Central United States from 1989-1998,” J. Geophys. Res., 108 (2003).

    Google Scholar 

  23. L. D. Carey and S. A. Rutledge, “Electrical and Multiparameter Radar Observations of a Severe Hailstorm,” J. Geophys. Res., 103 (1998).

    Google Scholar 

  24. L. D. Carey, S. A. Rutledge, and W. A. Petersen, “The Retationship between Severe Weather Reports and Cloud-to-ground Lightning Polarity in the Contiguous United States from 1989 to 1998,” Mon. Wea. Rev., 131 (2003).

    Google Scholar 

  25. S. A. Changnon, Jr., “More on the LaPorte Anomaly: A Review,” Bull. Amer. Meteorol. Soc., 61 (1980).

    Google Scholar 

  26. U. Dayan, B. Ziv, T. Shoob, and Y. Enzel, “Suspended Dust over Southeastern Mediterranean and Its Relation to Atmospheric Circulations,” Int. J. Climatol., 28 (2008).

    Google Scholar 

  27. P. J. DeMott, K. Sassen, M. R. Poellet, et al., “African Dust Aerosols as Atmospheric Ice Nuclei,” Geophys. Res. Lett., No. 14, 30 (2003).

    Google Scholar 

  28. A. Khain, A. Pokrovsky, M. Pinsky, et al., “Simulation of Effects of Atmospheric Aerosols on Deep Turbulent Convective Clouds Using a Spectral Microphysics Mixed-phase Cumulus Cloud Model. Part I: Model Description and Possible Applications,” J. Atmos. Sci., 61 (2004).

    Google Scholar 

  29. P. R. Krehbiel, R. J. Thomas, W. Rison, et al., “GPS-based Mapping System Reveals Lightning Inside Storms,” Eos. Trans. Amer. Geophys. Union, 81 (2000).

    Google Scholar 

  30. T. J. Lang, L. J. Miller, M. Weismann, et al., “The Severe Thunderstorm Electrification and Precipitation Study (STEPS),” Bull. Amer. Meteorol. Soc., 85 (2004).

    Google Scholar 

  31. T. J. Lang and S. A. Rutledge, “Relationships between Convective Storm Kinematics, Precipitation, and Lightning,” Mon. Wea. Rev., 130 (2002).

    Google Scholar 

  32. D. R. MacGorman and D. W. Burgess, “Positive Cloud-to-ground Lightning in Tornadic Storms and Hailstorms,” Mon. Wea. Rev., 122 (1994).

    Google Scholar 

  33. S. D. Pawar, V. Gopalakrishnan, P. Murugavel, et al., “Effects of Environmental Conditions on Inducing Charge Structures of Thunderstorms over Eastern India,” Earth, Planets and Space, No. 54, 66 (2014).

    Google Scholar 

  34. S. D. Pawar and A. K. Kamra, “Evolution of Lightning and the Possible Initiation/Triggering of Lightning Discharges by the Lower Postive Charge Centre in an Isotated Thundercloud in Tropics,” J. Geophys. Res., D02205, 109 (2004).

    Google Scholar 

  35. S. D. Pawar and A. K. Kamra, “Maxwell Curtent Density Characteristics betow Isotated Thunderstorms in Tropics,” J. Geophys. Res., D04208, 114 (2009).

    Google Scholar 

  36. S. D. Pawar, D. M. Lal, and P. Murugavel, “Lightning Characteristics over Central India during Indian Summer Monsoon,” Atmos. Res., 106 (2011).

    Google Scholar 

  37. X. Qie, X. Kong, G. Zhang, et al., “The Possible Charge Structure of Thunderstorm and Lightning Discharges in Northeastern Verge of Qinghai-Tibetan Plateau,” Atmos. Res., 76 (2005).

    Google Scholar 

  38. L. F. Radke, J. A. Coakley, and M. D. King, “Direct and Remote Sensing Observations of the Effects of Ships on Clouds,” Science, 246 (1989).

    Google Scholar 

  39. V. Ramanathan, P. J. Crutzen, et al., “The Indian Ocean Experiment: An Integrated Assessment of the Climate Forcing and Effects of the Great Indo-Asian Haze,” J. Geophys. Res., No. D22, 106 (2001).

    Google Scholar 

  40. D. Rosenfeld, “TRMM Observed First Direct Evtdence of Smoke from Forest Fires Inhibiting Rainfall,” Geophys. Res. Lett., No. 20, 26 (1999).

    Google Scholar 

  41. D. Rosenfeld and A. Givati, “Evidence of Orographic Precipitation Suppression by Air Pollution Induced Aerosols in the Western USA,” J. Appl. Meteorol., 45 (2006).

    Google Scholar 

  42. D. Rosenfeld and W. L. Woodley, “Pollution and Clouds,” Physics World, 14 (2001).

    Google Scholar 

  43. W. D. Rust and D. R. MacGorman, “Possibly Inverted-polarity Electrical Structures in Thunderstorms during STEPS,” Geophys. Res. Lett., No. 12, 29 (2002).

    Google Scholar 

  44. W. D. Rust, D. R. MacGorman, E. C. Bruning, et al., “Inverted Polarity Electrical Structures in Thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS),” Atmos. Res., 76 (2005).

    Google Scholar 

  45. A. Seifert and K. Beheng, “A Two-moment Cloud Microphysics Parameterization for Mixed-phase Clouds, Part II: Maritime versus Continental Deep Convective Storms,” Meteorol. Atmos. Phys., 92 (2006).

    Google Scholar 

  46. M. Stolzenburg, “Observations of High Ground Flash Densities of Positive Lightning in Summertime Thunderstorms,” Mon. Wea. Rev., 122 (1994).

    Google Scholar 

  47. B. Vonnegut and C. B. Moore, “Thermodynamic Conditions Favorable to Superlative Thunderstorm Updraft, Mixed Phase Microphysics and Lightning Flash Rate,” Atmos. Res., 76 (1958).

    Google Scholar 

  48. J. Warner, “A Reduction in Raintall Associated with Smoke from Sugar-cane Fires: An Inadvertent Weather Modification,” J. Appl. Meteorol., 7 (1968).

    Google Scholar 

  49. J. Warner and S. Twomey, “The Production of Cloud Nuclei by Cane Fires and the Effect on Cloud Droplet Concentration,” J. Atmos. Sci., 24 (1967).

  50. K. C. Wiens, S. A. Rutledge, and S. A. Tessendorf, “The 29 June 2000 Supercell Observed during STEPS, Part II: Lightning and Charge Structure,” J. Atmos. Sci., 62 (2005).

    Google Scholar 

  51. E. R. Williams, V. Mustak, D. Rosenfeld, et al., “Thermodynamic Conditions Favorable to Superlative Thunderstorm Updraft, Mixed Phase Microphysics and Lightning Flash Rate,” Atmos. Res., 7 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. E. Veremei.

Additional information

Original Russian Text © N.E. Veremei, Yu.A. Dovgalyuk, V. Gopalakrishnan, K.F. Komarovskikh, P. Murugavel, S.D. Pawar, A.A. Sinkevich, 2015, published in Meteorologiya i Gidrologiya, 2015, No. 12, pp. 5-18.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veremei, N.E., Dovgalyuk, Y.A., Gopalakrishnan, V. et al. Studying the effects of severe aerosol pollution of the atmosphere on the dynamics of cumulonimbus cloud charge structure by numerical modeling. Russ. Meteorol. Hydrol. 40, 777–786 (2015). https://doi.org/10.3103/S1068373915120018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373915120018

Keywords

Navigation