Skip to main content

Advertisement

Log in

Dynamics of the Electrical Structure of Cumulonimbus Clouds

  • Published:
Radiophysics and Quantum Electronics Aims and scope

We present the data on the dynamics of the electric field strength and volume charge of two severe thunderstorms in different regions of the world, namely, in the North Caucasus (Russia) and in Beijing (China). The data were obtained as a result of modeling, using a numerical three-dimensional non-stationary model of convective clouds developed at the A. I. Voeikov Main GeophysicalObservatory. The modeling was based on rawinsonde data obtained during the modeled thunderstorm events. The spatial distribution of the electric field strength and space charge inside the cloud and in its vicinity was calculated. The multilayer charge structure of the cloud with thin layers of “shielding” charges is reproduced and the corresponding structure of the electric field strength is presented for each electrification stage. The dynamics features of the electrical structure of the studied cumulonimbus clouds are discussed. The case of modeling of a cloud with inverted polarity is considered. Verification of the numerical model based on empirical models of convective cloud electrification showed a satisfactory result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. P. Mikhailovsky, Yu. A. Dovgalyuk, N. E. Veremey, and A. A. Sin’kevich, Trudy GGO, No. 587, 7–31 (2017).

  2. Yu. A. Dovgalyuk, N. E. Veremey, A. A. Sin’kevich, et al., Trudy GGO, No. 590, 7–26 (2018).

  3. M. V. Shatalina, S. O. Dement’eva, and E. A. Mareev, Meteor. Gidrol., No. 11, 81–87 (2016).

  4. A. A. Sin’kevich, Yu. A. Dovgalyuk, N. E. Veremey, and Yu. P. Mikha’lovsky, Confluence of Convective Clouds [in Russian], LLC Amirit, St. Petersburg (2018).

  5. N. E. Veremey, Yu. A. Dovgalyuk, and V. N. Morozov, Meteor. Gidrol., No. 11, 5–18 (2006).

  6. N. E. Veremey, Yu. A. Dovgalyuk, and V. N. Morozov, Russ. Meteorol. Hydrol., 32, No. 10. 634–642 (2007). https://doi.org/10.3103/S1068373907100044

  7. V. N. Morozov, N. E. Veremey, and Yu. A. Dovgalyuk, Trudy GGO, No. 559, 134–160 (2009).

  8. L. V. Kashleva, Yu. P. Mikhailovsky, and V. Yu. Mikhailovsky, Uchen. Zapis. Ros. Gosud. Gidrometeor. Univers., No. 45, 119–131 (2016).

  9. L. V. Kashleva and Yu. P. Mikhailovsky, Atmospheric Electricity [in Russian], Russian State Hydrometeorological University, St. Petersburg (2019).

  10. M. Stolzenburg and T. C. Marshall, Space Sci. Rev., 137, 355–372 (2008). https://doi.org/10.1007/978-0-387-87664-1_23

  11. T. Takahashi, J. Atm. Sci., 41, No. 17, 2542–2558 (1984). https://doi.org/10.1175/1520-0469(1984)041<2541:TENS>2.0.CO;2

  12. F. Rawling, Quar. J. Roy. Met. Soc., 108, No. 458, 779–800 (1982). https://doi.org/10.1002/qj.49710845804

    Article  ADS  Google Scholar 

  13. Yu. P. Mikhailovsky, Trud. GGO, No. 580, 125–138 (2016).

  14. D. M. Mach, R. J. Blakeslee, M. G. Bateman, and J. C. Bailey, J. Geophys. Res. Atmos., 114, No. D10, D10204 (2009). https://doi.org/10.1029/2008JD011495

    Article  ADS  Google Scholar 

  15. T. Hamlin and J. Harlin, Atmos. Res., 76, Nos. 1–4, 247–271 (2005). https://doi.org/10.1016/j.atmosres.2004.11.029

    Article  Google Scholar 

  16. Yu. P. Mikhailovsky, V. B.Popov, A. A. Sin’kevich, et al., Trudy GGO, No. 595, 125–138 (2019).

  17. B. A. Ashabokov, A. V. Shapovalov, D. D. Kuliev, et al., Radiophys. Quantum Electron., 56, Nos. 11–12, 811–817 (2014). https://doi.org/10.1007/s11141-014-9483-z

    Article  ADS  Google Scholar 

  18. S. O. Dement’eva and E. A. Mareev, Izv. Atmos. Ocean. Phys., 54, No. 1, 25–31 (2018). https://doi.org/10.7868/S0003351518010038

    Article  Google Scholar 

  19. N. E. Veremey, Yu. A. Dovgalyuk, M. A. Zatevakhin, et al., Trudy GGO, No. 582, 45–91 (2016).

  20. C. L. Ziegler, D. R. McGorman, J. E. Dye, and R. S. Ray, J. Geophys. Res. Atmos., 96, No. D7, 12833–12855 (1991). https://doi.org/10.1029/91JD01246

    Article  ADS  Google Scholar 

  21. C. M. Scavuzzo, S. Masuelli, G. M. Garanti, and E. R. Williams, J. Geophys. Res. Atmos., 103, No. D12, 13963–13973 (1998). https://doi.org/10.1029/97JD03734

    Article  ADS  Google Scholar 

  22. K. Norville, M. Baker, and J. Latham, J. Geophys. Res. Atmos., 96, No. D4, 7463–7481 (1991). https://doi.org/10.1029/90JD02577

    Article  ADS  Google Scholar 

  23. O. Altaratz, T. Reisin, and Z. Levin, J. Geophys. Res. Atmos., 110, No. D20205 (2005). https://doi.org/10.1029/2004JD005616

  24. E. R. Mansell, D. R. McGorman, C. L. Ziegler, and J. M. Straka, J. Geophys. Res., 110, No. D12, 012101 (2005). https://doi.org/10.1029/2004JD005287

    Article  Google Scholar 

  25. C. Barthe, G. Molinie, and J. P. Pinty, Atmosph. Res., 76, No. 1–4, 95–113 (2005). https://doi.org/10.1016/j.atmosres.2004.11.021

    Article  ADS  Google Scholar 

  26. B. Zhang, B. Chen, L. Shi, and Q. Chen, Math. Probl. Eng., 2016, 9201253 (2016). https://doi.org/10.1155/2016/9201253

    Article  Google Scholar 

  27. T. J. Lang, L. J. Miller, M. Weisman, et al., Bull. Am. Meteorol. Soc., 85, No. 8, 1107–1126 (2004). https://doi.org/10.1175/BAMS-85-8-1107

    Article  ADS  Google Scholar 

  28. W. D. Rust and D. R. MacGorman, Geophys. Res. Lett., 29, No. 12, 12-1–12-3 (2002). https://doi.org/10.1029/2001GL014303

    Article  ADS  Google Scholar 

  29. W. D. Rust, D. R. MacGorman, E. C. Bruning, et al., Atmos. Res., 76, No. 1–4, 247–271 (2005). https://doi.org/10.1016/j.atmosres.2004.11.029

    Article  Google Scholar 

  30. K. C. Wiens, S. A. Rutledge, and S. A. Tessendorf, J. Atmos. Sci., 62, No. 12, 4151–4177 (2005). https://doi.org/10.1175/JAS3615.1

    Article  ADS  Google Scholar 

  31. L. D. Carey, S. A. Rutledge, and W. A. Petersen, Mon. Weather Rev., 131, No. 7, 1211–1228 (2003). https://doi.org/10.1175/1520-0493(2003)131<1211:TRBSSR>2.0.CO

    Article  ADS  Google Scholar 

  32. M. Stolzenburg, Mon. Weather Rev., 122, No. 8, 1740–1750 (1994). https://doi.org/10.1175/1520-0493(1994)122<1740:OOHGFD>2.0.CO;2

    Article  ADS  Google Scholar 

  33. S. D. Pawar and A. K. Kamra, J. Geophys. Res., 109, No. D2, D02205 (2004). https://doi.org/10.1029/2003JD003735

    Article  ADS  Google Scholar 

  34. N. E. Veremey, Yu. A. Dovgalyuk, V. Gopalakrishnan, et al., Russ. Meteorol. Hydrol., 40, No. 12, 777–786 (2015). https://doi.org/10.3103/S1068373915120018

    Article  Google Scholar 

  35. A. Kh. Adzhiev, V. N. Stasenko, A. V. Shapovalov, and V. A. Shapovalov, Russ Meteorol. Hydrol., 41, No. 3, 186–192 (2016). https://doi.org/10.3103/S1068373916030031

    Article  Google Scholar 

  36. Kh. Kh. Mashukov, R. Kh. Zekoreev, and M. M. Kambiev, IOP Conf. Series: Mater. Sci. Engin., 698, 044041 (2019). https://doi.org/10.1088/1757-899X/698/4/044041

  37. D. Iudin, Atmosph. Res., 256, 105560 (2021). https://doi.org/10.1016/j.atmosres.2021.105560

    Article  Google Scholar 

  38. A. A. Syssoev, D. I. Iudin, A. A. Bulatov, and V. A. Rakov, J. Geophys. Res. Atmos., 125, No. 7, e2019JD031360 (2020). https://doi.org/10.1029/2019JD031360

    Article  ADS  Google Scholar 

  39. K. N. Pustovalov and P. M. Nagorsky, Opt. Atmos. Okean., 29, No. 8, 647–653 (2016). https://doi.org/10.15372/AOO20160805

    Article  Google Scholar 

  40. Yu. P. Mikhailovsky, A. A. Sin’kevich, B. G. Za’netdinov, and V. B. Popov, in: Proc. 26th All-Russian Open Scientific Conference for Propagation of Radio Waves, July 1–6, 2019, Kazan, Vol. 2, pp. 566–569.

  41. Yu. A. Dovgalyuk, N. E. Veremey, A. A. Sin’kevich, et al., Trudy GGO, No. 592, 7–22 (2019).

  42. A. A. Sin’kevich, V. B. Popov, I. A. Tarabukin, et al., Russ. Meteorol. Hydrol., 43, No. 8, 506–515 (2018). https://doi.org/10.3103/S1068373918080022

    Article  Google Scholar 

  43. A. A. Sin’kevich, Yu. A. Dovgalyuk, N. E. Veremey, et al., Russ. Meteorol. Hydrol., 42, No. 8, 494–502 (2017). https://doi.org/10.3103/S1068373917080027

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Toropova.

Additional information

Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 64, No. 5, pp. 341–353, May 2021. Russian DOI: 10.52452/00213462_2021_64_05_341

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikhailovsky, Y.P., Toropova, M.L., Veremey, N.E. et al. Dynamics of the Electrical Structure of Cumulonimbus Clouds. Radiophys Quantum El 64, 309–320 (2021). https://doi.org/10.1007/s11141-022-10133-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11141-022-10133-y

Navigation