Skip to main content
Log in

Investigation of the effects of high atmospheric aerosol pollution on the development of the high-depth cumulonimbus cloud

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

Considered is a case of the development of the cumulonimbus cloud (Cb) in the southwestern part of Saudi Arabia under the conditions of heavy pollution of atmosphere with natural aerosol. Using the ground-based radar and satellite radiometric instruments, the characteristics of the Cb are obtained for the cloud top height of more than 14 km and maximum reflectivity of 58 dBZ. To measure the precipitation rate using the radar data, the Z-I ratio obtained for the area under study was applied. To compute the precipitation rate, the results of the sounding with the SEVERI radiometer installed on the Meteosat-8 satellite were also used. Carried out are numerical experiments on the simulation of aerosol effects on the evolution of the cloud under study. The development of the cloud at the presence of background aerosol was simulated as well as at high aerosol concentration. Three cases are considered: aerosol is a passive admixture; aerosol has hygroscopic properties; aerosol has ice-forming properties. It is demonstrated that the most considerable effects on the cloud evolution are caused by the intensification of ice formation under the influence of aerosol; not only the time distribution of precipitation rate changes but also the amount of precipitation increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Ashabokov, L. M. Fedchenko, V. O. Tapaskhanov, et al., Physics of Hail Clouds and Their Modification (Nalchik, 2013) [in Russian].

    Google Scholar 

  2. V. M. Voloshchuk and Yu. S. Sedunov, Coagulation Processes in Disperse Systems (Gidrometeoizdat, Leningrad, 1975) [in Russian].

    Google Scholar 

  3. Yu. A. Dovgalyuk, N. E. Veremei, and A. A. Sin’kevich, The Use of One-and-a-Half-Dimensional Model for Solving Fundamental and Applied Problems of Cloud Physics (St. Petersburg, 2007) [in Russian].

    Google Scholar 

  4. Yu. A. Dovgalyuk and L. S. Ivlev, Physics of Water and Other Atmospheric Aerosol (St. Petersburg State Univ., St. Petersburg, 1998) [in Russian].

    Google Scholar 

  5. Yu. A. Dovgalyuk, A. A. Sin’kevich, V. D. Stepanenko, et al., “The Use of Numerical Model of Convective Cloud for Assessing Aerosol Pollution of Underlying Surface at the Accident at NPP,” in Problems of the Atmospheric Boundary Layer Physics and Air Pollution (to the 80th Birthday of Professor M. E. Berlyand) (Gidrometeoizdat, St. Petersburg, 2002) [in Russian].

    Google Scholar 

  6. V. E. Zuev and M. V. Kabanov, Atmospheric Aerosol Optics (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  7. V. E. Zuev and G. M. Krekov, Optical Models of Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russian].

    Google Scholar 

  8. L. S. Ivlev, Chemical Composition and Structure of Atmospheric Aerosols (Leningrad State Univ., Leningrad, 1982) [in Russian].

    Google Scholar 

  9. K. Ya. Kondrat’ev and D. V. Pozdnyakov, Aerosol Models of Atmosphere (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  10. T. W. Krauss, A. A. Sin’kevich, R. Burger, et al., “Investigation of the Impact of Dynamic Factors on Cb Cloud Development in Saudi Arabia,” Meteorol. Gidrol., No. 10 (2011) [Russ. Meteorol. Hydrol., No. 10, 36 (2011)].

    Google Scholar 

  11. T. W. Krauss, A. A. Sin’kevich, and A. S. Ghulam, “High-intensity Precipitation Measurement Using Remote Methods,” Meteorol. Gidrol., No. 7 (2012) [Russ. Meteorol. Hydrol., No. 7, 37 (2012)].

    Google Scholar 

  12. O. P. Petrenchuk, Experimental Studies of Atmospheric Aerosol (Gidrometeoizdat, Leningrad, 1979) [in Russian].

    Google Scholar 

  13. Yu. F. Ponomarev and A. A. Sin’kevich, “Electrification of Convective Clouds over Northwestern Russia,” Meteorol. Gidrol., No. 6 (1997) [Russ. Meteorol. Hydrol., No. 6 (1997)].

    Google Scholar 

  14. E. L. Potashnik and A. D. Kuznetsov, Mathematical Modeling of Cloud Processes. Teaching Aid (Russ. State Hydrometeorol. Univ., St. Petersburg, 2010) [in Russian].

    Google Scholar 

  15. A. A. Sin’kevich, Convective Clouds of Northwestern Russia (Gidrometeoizdat, Leningrad, 2001) [in Russian].

    Google Scholar 

  16. A. A. Sin’kevich and T. W. Krauss, “Cloud Modification in Saudi Arabia: Statistical Estimation of the Results,” Meteorol. Gidrol., No. 6 (2010) [Russ. Meteorol. Hydrol., No. 6, 35 (2010)].

    Google Scholar 

  17. N. S. Shishkin, Clouds, Precipitation, and Thunderstorm Electricity (Gidrometeoizdat, Leningrad, 1964) [in Russian].

    Google Scholar 

  18. S. M. Shmeter, Thermodynamics and Physics of Convective Clouds (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  19. A. S. Ackerman, O. B. Toon, J. P. J. Taylor, et al., “Effects of Aerosols on Cloud Albedo: Evaluation of Twomey’s Parameterization of Cloud Susceptibility Using Measurements of Ship Tracks,” J. Atmos. Sci., 57 (2000).

  20. M. A. Addullah and M. A. Al-Mazroui, “Climatological Study of the Southwestern Region of Saudi Arabia. I. Rainfall Analysis,” Climate Res., 9 (1998).

  21. M. O. Andreae, D. Rosenfeld, P. Artaxo, et al., “Smoking Rain Clouds over the Amazon,” Science, 303 (2004).

  22. T. L. Bell, D. Rosenfeld, K. Kim, et al., “Midweek Increase in U.S. Summer Rain and Storm Heights Suggests Air Pollution Invigorates Rainstorms,” J. Geophys. Res., 113 (2008).

  23. E. X. Berry, “Cloud Droplet Growth by Collection,” J. Atmos. Sci., 24 (1967).

  24. R. D. Borys, D. H. Lowenthal, S. A. Cohn, and W. O. J. Brown, “Mountaintop and Radar Measurements of Anthropogenic Aerosol Effects on Snow Growth and Snow Rate,” Geophys. Res. Lett., No. 10, 30 (2003).

  25. R. D. Borys, D. H. Lowenthal, and D. L. Mitchel, “The Relationship among Cloud Physics, Chemistry and Precipitation Rate in Cold Mountain Clouds,” Atmos. Environ., 34 (2000).

  26. S. A. Changnon, Jr., “More on the LaPorte Anomaly: A Review,” Bull. Amer. Meteorol. Soc., 61 (1980).

  27. P. Y. Chuang, D. R. Collins, H. Pawlowska, et al., “CCN Measurements During ACE-2 and Their Relationship to Cloud Microphysical Properties,” Tellus, 52B (2000).

  28. U. Dayan, B. Ziv, T. Shoob, and Y. Enzel, “Suspended Dust over Southeastern Mediterranean and Its Relation to Atmospheric Circulations,” Int. J. Climatol., 28 (2008).

  29. P. J. DeMott, K. Sassen, M. R. Poellet, et al., “African Dust Aerosols as Atmospheric Ice Nuclei,” Geophys. Res. Lett., No. 14, 30 (2003).

  30. M. Dixon and G. Wiener, “TITAN: Thunderstorm Identification, Tracking, Analysis, and Nowcasting—A Radar-based Methodology,” J. Atmos. Oceanic Technol., No. 6, 10 (1993).

  31. A. S. Ghulam, The Development of a Heavy Thunderstorm Climatology in Saudi Arabia Based on Observations, Analyses and Numerical Simulations, PhD Thesis (Univ. of East Anglia, Norwich, England, 2007).

    Google Scholar 

  32. I. Gultepe, G. A. Isaac, W. R. Leaitch, and C. M. Banic, “Parameterizations of Marine Stratus Microphysics Based on In Situ Observations: Implications for GCMs,” J. Climate, 9 (1996).

  33. T. Heinemann, MPE Validation Status Report, Technical Report (OPS/TH) (EUMETSAT, 2003).

    Google Scholar 

  34. C. Hoose and O. Mohler, “Heterogeneous Ice Nucleation on Atmospheric Aerosols: A Review of Results from Laboratory Experiments,” Atmos. Chem. Phys. Discuss., No. 467, 12 (2012).

  35. D. B. Johnson, “The Role of Giant and Ultra-giant Aerosol Particles in Warm Rain Initiation,” J. Atmos. Sci., 39 (1982).

  36. E. Kessler, “On the Distribution and Continuity of Water Substance in Atmospheric Circulations,” Meteorological Monographs, No. 32, 10 (1969).

  37. T. W. Krauss, A. A. Sinkevich, and A. S. Ghulam, “Effects of Feeder Cloud Merging on Storm Development in Saudi Arabia,” JKAU: Met., Env. & Arid Land Agric. Sci., No. 2, 22 (2011).

  38. T. W. Krauss, A. A. Sinkevich, and A. S. Ghulam, “Precipitation Characteristics of Natural and Seeded Cumulus Clouds in the Asir Region of Saudi Arabia,” J. Wea. Modification, 42 (2010).

  39. A. Khain, A. Pokrovsky, M. Pinsky, et al., “Simulation of Effects of Atmospheric Aerosols on Deep Turbulent Convective Clouds Using a Spectral Microphysics Mixed Phase Cumulus Cloud Model. Part I: Model Description and Possible Applications,” J. Atmos. Sci., 61 (2004).

  40. P. A. Kucera, D. Axisa, R. P. Burger, et al., “Features of the Weather Modification Assessment Project in the Southwest Region of Saudi Arabia,” J. Wea. Modification, 42 (2010).

  41. W. R. Leaitch, G. A. Isaac, J. W. Strapp, et al., “The Relationship between Cloud Droplet Number Concentrations and Anthropogenic Pollution: Observations and Climatic Implications,” J. Geophys. Res., 97 (1992).

  42. Z. Levin and W. R. Cotton, Aerosol Pollution Impact of Precipitation: A Scientific Review (Springer Verlag. 2009).

    Book  Google Scholar 

  43. Y. Liu and P. H. Daum, “Parameterization of the Autoconversion Process, Part I: Analytical Formlation of the Kessler-type Parameterizations,” J. Atmos. Sci., 61 (2004).

  44. Y. Liu, P. H. Daum, and R. L. McGraw, “Parameterization of the Autoconversion Process: Kessler-type, Sundqvist-type, and Unification,” in Proceedings of the 15th ARM Science Team Meeting, Daytona Beach, Florida, March 14–18, 2005.

  45. G. K. Mather, M. J. Dixon, and J. M. DeJager, “Assessing the Potential for Rain Augmentation—The Nelspruit Randomized Convective Cloud Seeding Experiment,” J. Appl. Meteorol., 35 (1996).

  46. S. D. Pawar, D. M. Lal, and P. Murugavel, “Lightning Characteristics over Central India during Indian Summer Monsoon,” J. Atmos. Res., 106 (2011).

  47. H. R. Pruppacher and J. D. Klett, Microphysics of Clouds and Precipitations (D. Reidel Publishing Company. 1978).

    Book  Google Scholar 

  48. L. F. Radke, J. A. Coakley, Jr., and M. D. King, “Direct and Remote Sensing Observations of the Effects of Ships on Clouds,” Science, 246 (1989).

  49. V. Ramanathan et al., “The Indian Ocean Experiment: An Integrated Assessment of the Climate Forcing and Effects of the Great Indo-Asian Haze,” J. Geophys. Res., No. 28, 106 (2001).

  50. D. Rosenfeld, “TRMM Observed First Direct Evidence of Smoke from Forest Fires Inhibiting Rainfall,” Geophys. Res. Lett, No. 20, 26 (1999).

  51. D. Rosenfeld and A. Givati, “Evidence of Orographic Precipitation Suppression by Air Polllution Induced Aerosols in the Western USA,” J. Appl. Meteorol., 45 (2006).

  52. D. Rosenfeld and W. L. Woodley, “Pollution and Clouds,” Physics World, 14 (2001).

  53. P. Seifert, A. Ansmann, I. Mattis, et al., “Saharan Dust and Heterogeneous Ice Formation: Eleven Years of Cloud Observations at a Central European EARLINET Site,” J. Geophys. Res., 115 (2010).

  54. A. Seifert and K. Beheng, “A Two-moment Cloud Microphysics Parameterization for Mixed-phase Clouds. Part II: Maritime versus Continental Deep Convective Storms,” Meteorol. Atmos. Phys., 92 (2006).

  55. A. Seifert and B. Stevens, “Microphysical Scaling Relations in a Kinematic Model of Isolated Shallow Cumulus Clouds,” J. Atmos. Sci., 67 (2010).

  56. J. P. Taylor and A. McHaffie, “Measurements of Cloud Susceptibility,” J. Atmos. Sci., 51 (1994).

  57. D. Trochkine, Y. Iwasaka, A. Matsuki, et al., “Mineral Aerosol Particles Collected in Dunhuang, China, and Their Comparison with Chemically Modified Particles Collected over Japan,” J. Geophys. Res., 108 (2003).

  58. G. Vali, Aircraft Studies in the Asir, Report No. AS163 (Univ. of Wyoming, Dept. of Atmos. Sci., 1991).

    Google Scholar 

  59. J. Warner, “A Reduction in Rainfall Associated with Smoke from Sugar-cane Fires: An Inadvertent Weather Modification,” J. Appl. Meteorol., 7 (1968).

  60. J. Warner and S. Twomey, “The Production of Cloud Nuclei by Cane Fires and the Effect on Cloud Droplet Concentration,” J. Atmos. Sci., 24 (1967).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Sinkevich.

Additional information

Original Russian Text © A.A. Sinkevich, T. W. Krauss, S.D. Pavar, N.E. Veremei, Yu.A. Dovgalyuk, A.B. Kurov, V. Gopalakrishnan, 2014, published in Meteorologiya i Gidrologiya, 2014, No. 9, pp. 16–33.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinkevich, A.A., Krauss, T.W., Pavar, S.D. et al. Investigation of the effects of high atmospheric aerosol pollution on the development of the high-depth cumulonimbus cloud. Russ. Meteorol. Hydrol. 39, 577–589 (2014). https://doi.org/10.3103/S1068373914090027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373914090027

Keywords

Navigation