Skip to main content
Log in

Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper is devoted to study the existence of solutions of a Cauchy type problem for a nonlinear fractional differential equation, via the techniques of measure of noncompactness. The investigation is based on a new fixed point result which is a generalization of the well known Darbo’s fixed point theorem. The main result is less restrictive than those given in the literature. Some illustrative examples are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Aghajani, J. Banaś, N. Sabzali, Some generalizations of Darbo fixed point theorem and applications. Bull. Belg. Math. Soc. Simon Stevin, 20, No 2 (2013), 345–358.

    MathSciNet  MATH  Google Scholar 

  2. A. Aghajani, Y. Jalilian, J.J. Trujillo, On the existence of solutions of fractional integro-differential equations. Fract. Calc. Appl. Anal. 15, No 1 (2012), 44–69; DOI: 10.2478/s13540-012-0005-4; http://link.springer.com/article/10.2478/s13540-012-0005-4.

    MathSciNet  Google Scholar 

  3. B. Ahmad, J.J. Nieto, Anti-periodic fractional boundary value problems with nonlinear term depending on lower order derivative. Fract. Calc. Appl. Anal. 15, No 3 (2012), 451–462; DOI: 10.2478/s13540-012-0032-1; http://link.springer.com/article/10.2478/s13540-012-0032-1.

    MathSciNet  MATH  Google Scholar 

  4. B. Ahmad, J.J. Nieto, A. Alsaedi, M. El-Shahed, A study of nonlinear Langevin equation involving two fractional orders in different intervals. Nonlinear Anal., Real World Appl. 13 (2012), 599–606.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Ahmad, S.K. Ntouyas, Nonlinear fractional differential equations and inclusions of arbitrary order and multi-strip boundary conditions. Electron. J. Differential Equations, 2012 (2012), Article # 98, 1–22.

    MathSciNet  Google Scholar 

  6. W.M. Ahmad, R. El-Khazali, Fractional-order dynamical models of love. Chaos Solitons Fractals 33 (2007), 1367–1375.

    Article  MathSciNet  MATH  Google Scholar 

  7. R.R. Akhmerov. M.I. Kamenskii, A.S. Potapov, A.E. Rodkina, B.N Sadovskii, Measures of Noncompactness and Condensing Operators. Birkhäuser Verlag, Basel-Boston-Berlin (1992).

    Book  MATH  Google Scholar 

  8. J. Bai, X.-C. Feng, Fractional-order anisotropic diffusion for image denoising. IEEE Trans. Image Process. 16 (2007), 2492–2502.

    Article  MathSciNet  Google Scholar 

  9. D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional Calculus: Models and Numerical Methods. World Scientific, Singapore (2012).

    Google Scholar 

  10. J. Banaś, K. Goebel, Measure of Noncompactness in Banach Spaces. Lect. Notes Pure Appl. Math., Vol. 60, Marcel Dekker, New York (1980).

    Google Scholar 

  11. M. Belmekki, J.J. Nieto, R. Rodríguez-López, Existence of periodic solution for a nonlinear fractional differential equation. Bound. Value Probl. 2009 (2009), Article ID 324561, 18 pages.

  12. M. Benchohra, J.R. Graef, F.Z. Mostafai, Weak solutions for nonlinear fractional differential equations on reflexive Banach spaces. Electron. J. Qual. Theory. 2010 (2010), Article # 54, 1–10.

    Google Scholar 

  13. D. Bothe, Multivalued perturbations of m-accretive differential inclusions. Isreal J. Math. 108 (1998), 109–138.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Caponetto, G. Dongola, L. Fortuna, I. Petráš, Fractional Order Systems: Modeling and Control Applications. World Scientific, River Edge, NJ (2010).

    Google Scholar 

  15. M. Caputo, F. Mainardi, A new dissipation model based on memory mechanism. Pure Appl. Geophys. 91 (1971), 134–147; Reprinted in: Fract. Calc. Appl. Anal. 10 (2007), 310–323.

    Article  Google Scholar 

  16. A. Cernea, A note on the existence of solutions for some boundary value problems of fractional differential inclusions. Fract. Calc. Appl. Anal. 15, No 2 (2012), 183–194; DOI: 10.2478/s13540-012-0013-4; http://link.springer.com/article/10.2478/s13540-012-0013-4.

    MathSciNet  MATH  Google Scholar 

  17. A. Chatterjee, Statistical origins of fractional derivatives in viscoelasticity. J. Sound Vib. 284 (2005), 1239–1245.

    Article  Google Scholar 

  18. J.-T. Chern, Finite Element Modeling of Viscoelastic Materials on the Theory of Fractional Calculus. Ph.D. thesis, Pennsylvania State University (1993).

    Google Scholar 

  19. E. Cuesta, J. Finat Codes, Image processing by means of a linear integro-differential equation. In: M.H. Hamza (Ed.) Visualization, Imaging, and Image Processing 2003, Paper 91, ACTA Press, Calgary (2003).

    Google Scholar 

  20. G. Darbo, Punti uniti in transformazioni a condominio non compatto. Rend. Sem. Math. Univ. Padova 24 (1955), 84–92.

    MathSciNet  MATH  Google Scholar 

  21. W. Deng, Short memory principle and a predictor-corrector approach for fractional differential equations. J. Comput. Appl. Math. 206 (2007), 174–188.

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Diethelm, On the separation of solutions of fractional differential equations. Fract. Calc. Appl. Anal. 11, No 2 (2008), 259–268; http://www.math.bas.bg/~fcaa.

    MathSciNet  MATH  Google Scholar 

  23. K. Diethelm, M. Weilbeer, A numerical approach for Joulins model of a point source initiated flame. Fract. Calc. Appl. Anal. 7, No 1 (2004), 191–212.

    MathSciNet  MATH  Google Scholar 

  24. A.D. Freed, K. Diethelm, Fractional calculus in biomechanics: a 3D viscoelastic model using regularized fractional-derivative kernels with application to the human calcaneal fat pad. Biomech. Model. Mechanobiol. 5 (2006), 203–215.

    Article  Google Scholar 

  25. A.D. Freed, K. Diethelm, Y. Luchko, Fractional-Order Viscoelasticity (FOV): Constitutive Development Using the Fractional Calculus (First Annual Report). Technical Memorandum 2002-211914, NASA Glenn Research Center, Cleveland (2002).

    Google Scholar 

  26. L. Gaul, P. Klein, S. Kempfle, Damping description involving fractional operators. Mech. Syst. Signal Process. 5 (1991), 81–88.

    Article  Google Scholar 

  27. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Vol. 204. Elsevier Science, Amsterdam (2006).

    Book  MATH  Google Scholar 

  28. A.A. Kilbas, J.J. Trujillo, Differential equations of fractional order. Methods, results and problems, I. Appl. Anal. 78 (2001), 153–192.

    Article  MathSciNet  MATH  Google Scholar 

  29. A.A. Kilbas, J.J. Trujillo, Differential equations of fractional order. Methods, results and problems, II. Appl. Anal. 81 (2002), 435–493.

    Article  MathSciNet  MATH  Google Scholar 

  30. K. Li, J. Peng, J. Gao, Nonlocal fractional semilinear differential equations in separable Banach spaces. Electron. J. Differential Equations 2013 (2013), Article # 7, 1–7.

    Article  MathSciNet  Google Scholar 

  31. J. Liang, Z. Liu, X. Wang, Solvability for a couple system of nonlinear fractional differential equations in a Banach space. Fract. Calc. Appl. Anal. 16, No 1 (2013), 51–63; DOI: 10.2478/s13540-013-0004-0; http://link.springer.com/article/10.2478/s13540-013-0004-0.

    MathSciNet  Google Scholar 

  32. R. Metzler, W. Schick, H.-G. Kilian, T.F. Nonnenmacher, Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys. 103 (1995), 7180–7186.

    Article  Google Scholar 

  33. I. Podlubny, Fractional-Order Systems and Fractional-Order Controllers. Technical Report UEF-03-94, Institute for Experimental Physics, Slovak Acad. Sci. (1994).

    MATH  Google Scholar 

  34. I. Podlubny, L. Dorcak, J. Misanek, Application of fractional-order derivatives to calculation of heat load intensity change in blast furnace walls. Trans. Tech. Univ. Košice 5 (1995), 137–144.

    Google Scholar 

  35. S. Shaw, M.K. Warby, J.R. Whiteman, A comparison of hereditary integral and internal variable approaches to numerical linear solid elasticity. In: Proc. of the XIII Polish Conf. on Computer Methods in Mechanics, Poznan (1997).

    Google Scholar 

  36. L. Song, S.Y. Xu, J.Y. Yang, Dynamical models of happiness with fractional order. Commun. Nonlinear Sci. Numer. Simulat. 15 (2010), 616–628.

    Article  MathSciNet  MATH  Google Scholar 

  37. G. Wang, D. Baleanu, L. Zhang, Monotone iterative method for a class of nonlinear fractional differential equations. Fract. Calc. Appl. Anal. 15, No 2 (2012), 244–252; DOI: 10.2478/s13540-012-0018-z; http://link.springer.com/article/10.2478/s13540-012-0018-z.

    MathSciNet  MATH  Google Scholar 

  38. J.R. Wang, Y. Zhou, M. Fečkan, Abstract Cauchy problem for fractional differential equations. Nonlinear Dynam. 71, No 4 (2013), 685–700; DOI 10.1007/s11071-012-0452-9.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asadollah Aghajani.

About this article

Cite this article

Aghajani, A., Pourhadi, E. & Trujillo, J.J. Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces. fcaa 16, 962–977 (2013). https://doi.org/10.2478/s13540-013-0059-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0059-y

MSC 2010

Key Words and Phrases

Navigation