Skip to main content
Log in

Fractional wave equations with attenuation

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

Fractional wave equations with attenuation have been proposed by Caputo [5], Szabo [28], Chen and Holm [7], and Kelly et al. [11]. These equations capture the power-law attenuation with frequency observed in many experimental settings when sound waves travel through inhomogeneous media. In particular, these models are useful for medical ultrasound. This paper develops stochastic solutions and weak solutions to the power law wave equation of Kelly et al. [11].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O.P. Agrawal, A general solution for the fourth-order fractional diffusion-wave equation. Fract. Calc. Appl. Anal. 3, No 1 (2000), 1–12.

    MathSciNet  MATH  Google Scholar 

  2. B. Baeumer, D.A. Benson and M.M. Meerschaert, Advection and dispersion in time and space. Phys. A 350, No 2–4 (2005), 245–262.

    Google Scholar 

  3. P. Becker-Kern, M.M. Meerschaert and H.P. Scheffler, Limit theorem for continuous time random walks with two time scales. J. Applied Probab. 41, No 2 (2004), 455–466.

    Article  MathSciNet  MATH  Google Scholar 

  4. D.T. Blackstock, Transient solution for sound radiated into a viscous fluid. J. Acoust. Soc. Am. 41 (1967), 1312–1319.

    Article  MATH  Google Scholar 

  5. M. Caputo. Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13, No 5 (1967), 529–539; Reprinted in: Fract. Calc. Appl. Anal. 11, No 1 (2008), 3–14.

    Article  Google Scholar 

  6. W. Chen and S Holm, Modified Szabo’s wave equation models for lossy media obeying frequency power law. J. Acoust. Soc. Am. 114, No 5 (2003), 2570–2574.

    Article  Google Scholar 

  7. W. Chen and S. Holm, Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. J. Acoust. Soc. Am. 115, No 4 (2004), 1424–1430.

    Article  MathSciNet  Google Scholar 

  8. F.A. Duck, Physical Properties of Tissue. Academic Press, Boston (1990).

    Google Scholar 

  9. R. Gorenflo, A. Iskenderov and Yu. Luchko, Mapping between solutions of fractional diffusion-wave equations. Fract. Calc. Appl. Anal. 3, No 1 (2000), 75–86.

    MathSciNet  MATH  Google Scholar 

  10. N. Jacob, Pseudo Differential Operators and Markov Processes, Vol. I. Imperial College Press, London (2001).

    Book  MATH  Google Scholar 

  11. J.F. Kelly, R.J. McGough, and M.M. Meerschaert, Time-domain 3D Green’s functions for power law media. J. Acoust. Soc. Am. 124, No 5 (2008), 2861–2872.

    Article  Google Scholar 

  12. J. Kemppainen, Solvability of a Dirichlet problem for a time fractional diffusion-wave equation in Lipschitz domains. Fract. Calc. Appl. Anal. 15, No 2 (2012), 195–206; DOI:10.2478/s13540-012-0014-3; at http://link.springer.com/article/10.2478/s13540-012-0014-3.

    MathSciNet  Google Scholar 

  13. A.A. Kilbas, J.J. Trujillo and A.A. Voroshilov, Cauchy-Type problem for diffusion-wave equation with the Riemann-Liouville partial derivative. Fract. Calc. Appl. Anal. 8, No 4 (2005), 403–430; at http://www.math.bas.bg/~fcaa.

    MathSciNet  MATH  Google Scholar 

  14. V.N. Kolokoltsov, Generalized continuous-time random walks, subordination by hitting times, and fractional dynamics. Th. Probab. Appl. 53, No 4 (2009), 594–609.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Liebler, S. Ginter, T. Dreyer, and R.E. Riedlinger, Full wave modeling of therapeutic ultrasound: Efficient time-domain implementation of the frequency power-law attenuation. J. Acoust. Soc. Am. 116, No 5 (2004), 2742–2750.

    Article  Google Scholar 

  16. F. Liu, M.M. Meerschaert, R.J. McGough, P. Zhuang and Q. Liu, Numerical methods for solving the multi-term time-fractional wavediffusion equation. Fract. Calc. Appl. Anal. 16,No 1 (2013), 9–25 (same issue); DOI:10.2478/s13540-013-0002-2; at http://link.springer.com/journal/13540.

    MathSciNet  Google Scholar 

  17. F. Mainardi, Fractional Calculus and Waves in Linear Viscoleasticity. Imperial College Press, London (2010).

    Book  Google Scholar 

  18. M.M. Meerschaert, D.A. Benson, H.P. Scheffler, and B. Baeumer, Stochastic solution of space-time fractional diffusion equations. Phys. Rev. E 65, No 4 (2002), 1103–1106.

    Article  MathSciNet  Google Scholar 

  19. M.M. Meerschaert and H.P. Scheffler, Limit theorems for continuous time random walks with infinite mean waiting times. J. Applied Probab. 41, No 3 (2004), 623–638.

    Article  MathSciNet  MATH  Google Scholar 

  20. M.M. Meerschaert and H.-P. Scheffler, Triangular array limits for continuous time random walks. Stoch. Proc. Appl. 118, No 9 (2008), 1606–1633.

    Article  MathSciNet  MATH  Google Scholar 

  21. M.M. Meerschaert and A. Sikorskii, Stochastic Models for Fractional Calculus. De Gruyter, Berlin (2012).

    MATH  Google Scholar 

  22. M.M. Meerschaert, P. Straka, Y. Zhou, and J. McGough, Stochastic solution to a time-fractional attenuated wave equation. Nonlinear Dynamics 70,No. 2 (2012), 1273–1281.

    Article  MathSciNet  Google Scholar 

  23. Y. Povstenko, Non-central-symmetric solution to timefractional diffusion-wave equation in a sphere under Dirichlet boundary condition. Fract. Calc. Appl. Anal. 15, No 2 (2012), 253–266; DOI:10.2478/s13540-012-0019-y; at http://link.springer.com/article/10.2478/s13540-012-0019-y.

    MathSciNet  Google Scholar 

  24. A.I. Saichev and G.M. Zaslavsky. Fractional kinetic equations: Solutions and applications. Chaos 7, No 4 (1997), 753–764.

    Article  MathSciNet  MATH  Google Scholar 

  25. G. Samorodnitsky and M. Taqqu, Stable non-Gaussian Random Processes. Chapman and Hall, New York (1994).

    MATH  Google Scholar 

  26. I. Stakgold, Green’s Functions and Boundary Value Problems. Second Edition, John Wiley and Sons, New York (1998).

    MATH  Google Scholar 

  27. M.N. Stojanović, Well-posedness of diffusion-wave problem with arbitrary finite number of time fractional derivatives in Sobolev spaces Hs. Fract. Calc. Appl. Anal. 13, No 1 (2010), 21–42; at http://www.math.bas.bg/~fcaa.

    MathSciNet  MATH  Google Scholar 

  28. T.L. Szabo, Causal theories and data for acoustic attenuation obeying a frequency power-law. J. Acoust. Soc. Am. 97, No 1 (1995), 14–24.

    Article  Google Scholar 

  29. B.E. Treeby and B.T. Cox, Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J. Acoust. Soc. Am. 127, No 5 (2010), 2741–2748.

    Article  Google Scholar 

  30. M.G. Wismer, Finite element analysis of broadband acoustic pulses through inhomogenous media with power law attenuation. J. Acoust. Soc. Am. 120, No 6 (2006), 3493–3502.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Straka.

About this article

Cite this article

Straka, P., Meerschaert, M.M., McGough, R.J. et al. Fractional wave equations with attenuation. fcaa 16, 262–272 (2013). https://doi.org/10.2478/s13540-013-0016-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0016-9

MSC 2010

Key Words and Phrases

Navigation