Skip to main content
Log in

Non-central-symmetric solution to time-fractional diffusion-wave equation in a sphere under Dirichlet boundary condition

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The time-fractional diffusion-wave equation is considered in a sphere in the case of three spatial coordinates r, µ, and φ. The Caputo fractional derivative of the order 0 < α ≤ 2 is used. The solution is found using the Laplace transform with respect to time t, the finite Fourier transform with respect to the angular coordinate φ, the Legendre transform with respect to the spatial coordinate µ, and the finite Hankel transform of the order n + 1/2 with respect to the radial coordinate r. In the central symmetric case with one spatial coordinate r the obtained result coincides with that studied earlier. Numerical results are illustrated graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions. Dover, New York (1972).

    MATH  Google Scholar 

  2. B.M. Budak, A.A. Samarskii, A.N. Tikhonov, A Collection of Problems on Mathematical Physics. Pergamon Press, Oxford (1964).

    Google Scholar 

  3. H.S. Carslow, J.C. Jaeger, Conduction of Heat in Solids, 2nd. Ed. Clarendon Press, Oxford (1959).

    Google Scholar 

  4. L. Debnath, D. Bhatta, Integral Transforms and Their Applications, 2nd Ed. Chapman & Hall/CRC, Boca Raton (2007).

    Google Scholar 

  5. G. Doetsch, Anleitung zum praktischen Gebrauch der Laplace-Transformation und der Z-Transformation. Springer, München (1967).

    MATH  Google Scholar 

  6. Y. Fujita, Integrodifferential equation which interpolates the heat equation and the wave equation. Osaka J. Math. 27, No 2 (1990), 309–321.

    MathSciNet  MATH  Google Scholar 

  7. A.S. Galitsyn, A.N. Zhukovsky, Integral Transforms and Special Functions in Heat Conduction Problems. Naukova Dumka, Kiev (1976) (In Russian).

    Google Scholar 

  8. R. Gorenflo, J. Loutchko, Yu. Luchko, Computation of the Mittag-Leffler function and its derivatives. Fract. Calc. Appl. Anal. 5, No 4 (2002), 491–518; http://www.math.bas.bg/-fcaa.

    MathSciNet  MATH  Google Scholar 

  9. R. Gorenflo, F. Mainardi, Fractional calculus: Integral and differential equations of fractional order. In: A. Carpinteri and F. Mainardi (Eds.): Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien (1997), 223–276.

    Google Scholar 

  10. R. Hilfer (Ed.), Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000).

    MATH  Google Scholar 

  11. A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  12. E.K. Lenzi, L.R. da Silva, A.T. Silva, L.R. Evangelista, M.K. Lenzi, Some results for a fractional diffusion equation with radial symmetry in a confined region. Physica A 388, No 6 (2009), 806–810.

    Article  Google Scholar 

  13. E.K. Lenzi, H.V. Ribeiro, J. Martins, M.K. Lenzi, G.G. Lenzi, S. Specchia, Non-Markovian diffusion equation and diffusion in a porous catalyst. Chem. Eng. J. 172, No 2–3 (2011) 1083–1087.

    Article  Google Scholar 

  14. E.K. Lenzi, R. Rossato, M.K. Lenzi, L.R. da Silva, G. Gonçalves, Fractional diffusion equation and external forces: solutions in a confined region. Z. Naturforsch. A 65, No 5 (2010), 423–430.

    Google Scholar 

  15. R.L. Magin, Fractional Calculus in Bioengineering. Begell House Publishers, Inc, Connecticut (2006).

    Google Scholar 

  16. F. Mainardi, The fundamental solutions for the fractional diffusionwave equation. Appl. Math. Lett. 9, No 6 (1996), 23–28.

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Mainardi, Fractional relaxation-oscillation and fractional diffusionwave phenomena. Chaos, Solitons & Fractals 7, No 9 (1996), 1461–1477.

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010).

    Book  MATH  Google Scholar 

  19. R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: A fractional dynamics approach. Phys. Rep. 339, No 1 (2000), 1–77.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. Metzler, J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37, No 31 (2004), R161–R208.

    Article  MathSciNet  MATH  Google Scholar 

  21. M.N. Özişik, Heat Conduction. JohnWiley and Sons, New York (1980).

    Google Scholar 

  22. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  23. Y.Z. Povstenko, Fractional heat conduction equation and associated thermal stress. J. Thermal Stresses 28, No 1 (2005), 83–102.

    Article  MathSciNet  Google Scholar 

  24. Y.Z. Povstenko, Fractional heat conduction equation and associated thermal stresses in an infinite solid with spherical cavity. Quart. J. Mech. Appl. Math. 61, No 4 (2008), 523–547.

    Article  MathSciNet  MATH  Google Scholar 

  25. Y. Povstenko, Time-fractional radial diffusion in a sphere. Nonlinear Dyn. 53, No 1–2 (2008), 55–65.

    Article  MathSciNet  MATH  Google Scholar 

  26. Y.Z. Povstenko, Fundamental solutions to three-dimensional diffusionwave equation and associated diffusive stresses. Chaos Solitons Fractals 36, No 4 (2008), 961–972.

    Article  MathSciNet  MATH  Google Scholar 

  27. Y.Z. Povstenko, Fundamental solutions to central symmetric problems for fractional heat conduction equation and associated thermal stresses. J. Thermal Stresses 31, No 2 (2008), 127–148.

    Article  Google Scholar 

  28. Y. Povstenko, Evolution of the initial box-signal for time-fractional diffusion-wave equation in a case of different spatial dimensions. Physica A 389, No 21 (2010), 4696–4707.

    Article  Google Scholar 

  29. Y. Povstenko, Solutions to diffusion-wave equation in a body with a spherical cavity under Dirichlet boundary condition. Int. J. Optim. Control: Theor. Appl. 1, No 1 (2011), 3–15.

    MathSciNet  MATH  Google Scholar 

  30. Y.Z. Povstenko, Solutions to time-fractional diffusion-wave equation in spherical coordinates. Acta Mech. Automat. 5, No 2 (2011), 108–111.

    Google Scholar 

  31. Y. Povstenko, Dirichlet problem for time-fractional radial heat conduction in a sphere and associated thermal stresses. J. Thermal Stresses 34, No 1 (2011), 51–67.

    Article  Google Scholar 

  32. Y. Povstenko, Non-axisymmetric solutions to time-fractional diffusionwave equation in an infinite cylinder. Fract. Calc. Appl. Anal. 14, No 3 (2011), 418–435, DOI:10.2478/s13540-011-0026-4; at http://www.springerlink.com/content/1311-0454/14/3/.

    MathSciNet  Google Scholar 

  33. H. Qi, J. Liu, Time-fractional radial diffusion in hollow geometries. Meccanica 45, No 4 (2010), 577–583.

    Article  MathSciNet  Google Scholar 

  34. W.R. Schneider, W. Wyss, Fractional diffusion and wave equations. J. Math. Phys. 30, No 1 (1989), 134–144.

    Article  MathSciNet  MATH  Google Scholar 

  35. I.N. Sneddon, The Use of Integral Transforms. McGraw-Hill, New York (1972).

    MATH  Google Scholar 

  36. J.A. Tenreiro Machado, And I say to myself: “What a fractional world!” Frac. Calc. Appl. Anal. 14, No 4 (2011), 635–654, DOI:10.2478/s13540-011-0037-1; at http://www.springerlink.com/content/1311-0454/14/4/.

    Google Scholar 

  37. V.V. Uchaikin, Method of Fractional Derivatives. Arteshock, Ulyanovsk (2008). (In Russian).

    Google Scholar 

  38. B.J. West, M. Bologna, P. Grigolini, Physics of Fractal Operators. Springer, New York (2003).

    Google Scholar 

  39. W. Wyss, The fractional diffusion equation. J. Math. Phys. 27, No 11 (1986), 2782–2785.

    Article  MathSciNet  MATH  Google Scholar 

  40. G.M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, No 6 (2002), 461–580.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuriy Povstenko.

About this article

Cite this article

Povstenko, Y. Non-central-symmetric solution to time-fractional diffusion-wave equation in a sphere under Dirichlet boundary condition. fcaa 15, 253–266 (2012). https://doi.org/10.2478/s13540-012-0019-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-012-0019-y

MSC 2010

Key Words and Phrases

Navigation