Skip to main content
Log in

Solvability of a Dirichlet problem for a time fractional diffusion-wave equation in Lipschitz domains

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

This paper investigates a Dirichlet problem for a time fractional diffusion-wave equation (TFDWE) in Lipschitz domains. Since (TFDWE) is a reasonable interpolation of the heat equation and the wave equation, it is natural trying to adopt the techniques developed for solving the aforementioned problems. This paper continues the work done by the author for a time fractional diffusion equation in the subdiffusive case, i.e. the order of the time differentiation is 0 < α < 1. However, when compared to the subdiffusive case, the operator α t in (TFDWE) is no longer positive. Therefore we follow the approach applied to the hyperbolic counterpart for showing the existence and uniqueness of the solution.

We use the Laplace transform to obtain an equivalent problem on the space-Laplace domain. Use of the jump relations for the single layer potential with density in H −1/2(Γ) allows us to define a coercive and bounded sesquilinear form. The obtained variational form of the original problem has a unique solution, which implies that the original problem has a solution as well and the solution can be represented in terms of the single layer potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bamberger, T. Ha Duong, Formulation Variationelle Espace-Temps pour le Calcul par Potentiel Retardé de la Diffraction d’une Onde Acoustique (I). Math. Meth. Appl. Sci. 8 (1986), 405–435.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Bazhlekova, Fractional Evolution Equations in Banach Spaces. PhD Thesis, Tehn. University Eindhoven (2001).

  3. M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19 (1988), 613–626.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Costabel, Time-dependent problems with the boundary integral equation method. In: Encyclopedia of Computational Mechanics, Volume 1: Fundamentals, Wiley (2004).

  5. A. Hanyga, Multidimensional solutions of time-fractional diffusion-wave equations. Proc. R. Soc. Lond. A 458 (2002), 933–957.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Kemppainen, K. Ruotsalainen, Boundary integral solution of the time-fractional diffusion equation. Integr. Equ. Oper. Theory 64 (2009), 239–249.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Kemppainen, Behaviour of the Boundary Potentials and Boundary Integral Solution of the Time Fractional Diffusion Equation. PhD Thesis, Acta Univ. Oul. A. 548 (2010).

  8. J. Kemppainen, Properties of the single layer potential for the time fractional diffusion equation. Journal of Integral Equations and Applications 23, No 3 (2011), 437–456.

    Article  MathSciNet  Google Scholar 

  9. J. Kemppainen, Boundary behaviour of the layer potentials for the time fractional diffusion equation in Lipschitz domains. Journal of Integral Equations and Applications 23, No 4 (2011), 541–564.

    Article  MathSciNet  Google Scholar 

  10. J. Kemppainen, Existence and uniqueness of the solution for a time-fractional diffusion equation. Fract. Calc. Appl. Anal. 14, No 3 (2011), 411–417; DOI:10.2478/s13540-011-0025-5; at http://www.springerlink.com/content/1311-0454/14/3/.

    MathSciNet  Google Scholar 

  11. A.A. Kilbas, M. Saigo, H-transforms: Theory and Applications. CRC Press, LLC (2004).

    Book  MATH  Google Scholar 

  12. X. Li, Y. Xu, A space-time spectral method for the time fractional diffusion equation. SIAM J. Numer. Anal. 47, No 3 (2009), 2108–2131.

    Article  MathSciNet  MATH  Google Scholar 

  13. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, New York (2000).

    MATH  Google Scholar 

  14. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  15. A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series, Vol. 3. More Special Functions. Overseas Publishers Association, Amsterdam (1990).

    Google Scholar 

  16. W.R. Schneider, W. Wyss, Fractional diffusion and wave equations. J. Math. Phys. 30 (1989), 134–144.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka Kemppainen.

About this article

Cite this article

Kemppainen, J. Solvability of a Dirichlet problem for a time fractional diffusion-wave equation in Lipschitz domains. fcaa 15, 195–206 (2012). https://doi.org/10.2478/s13540-012-0014-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-012-0014-3

MSC 2010

Key Words and Phrases

Navigation