Skip to main content

Advertisement

Log in

Assessment of ecological diversity of rhizobacterial communities in vermicompost and analysis of their potential to improve plant growth

  • Section Cellular and Molecular Biology
  • Published:
Biologia Aims and scope Submit manuscript

Abstract

Present study was designed to determine the microbial diversity from three distinctive sites (amended with vermicompost) of Gujarat, India. A set of 76 strains were screened from total of 438 strains that exhibit plant growthpromoting (PGP) and antagonistic potential isolated from sites PS1 (Mehsana district), BS2 (Dantiwada district) and VS3 (Gandhinagar district). Their diversity indices were studied for determining the species richness and evenness of screened isolates. Results revealed that site BS2 showed the most significant diversity indices in terms of Shannon (H′ 1.525) and Simpson (1/D 5.120) than other two samples. Principal component analysis showed that bacterial diversity (H′) was correlated with the soil characteristics. Chickpea and groundnut plants inoculated with MBCU1 and MBCU3 isolates showed an increase in the vegetative growth parameters that evaluate plant growth when compared to uninoculated controls. Strains MBCU1 and MBCU3 were identified as Pseudomonas stutzeri and Pseudomonas mosselii, respectively, according to sequence analysis of the 16S rRNA gene. These both isolates belong to site BS2 and they showed specific PGP traits suggesting that these isolates can promote plant growth by more than one mechanism with respect to their higher diversity index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PCA:

principal component analysis

PGP:

plant growth-promoting

PGPR:

plant growth-promoting rhizobacteria

PIE:

probability of an interspecific encounter

References

  • Arruda L., Beneduzi A., Martins A., Lisboa B., Lopes C., Bertolo F., Passaglia L.M.P. & Vargas L.K. 2013. Screening of rhizobacteria isolated from maize (Zea mays L.) in Rio Grande do Sul State (South Brazil) and analysis of their potential to improve plant growth. Appl. Soil Ecol. 63: 15–22.

    Article  Google Scholar 

  • Bashan Y., Puente M.E., Rodriguez-Mendoza M.N., Toledo G., Holguin G., Ferrera-Cerrato R. & Pedrin S. 1995. Survival of Azospirillum brasilense in the bulk soil and rhizosphere of soil types. Appl. Environ. Microbiol. 61: 1938–1945.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bhatia S., Maheshwari D.K., Dubey R.C., Arora D.S., Bajpai V.K. & Kang S.C. 2008. Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L). J. Microbiol. Biotechnol. 18: 1578–1583.

    Google Scholar 

  • Berger W.H. & Parker F.L. 1970. Diversity of planktonic forminifera in deep-sea sediments. Science 168: 1345–1347.

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A., Moreira F., Costa P.B., Vargas L.K., Lisboa B.B., Favreto R., Baldani J.I. & Passaglia L.M.P. 2013. Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the South of Brazil. Appl. Soil Ecol. 63: 94–104.

    Article  Google Scholar 

  • Castric P.A. 1975. Hydrogen cyanide; a secondary metabolite of Pseudomonas aeruginosa. Can. J. Microbiol. 21: 613–618.

    Article  CAS  PubMed  Google Scholar 

  • Cattelan A.Z., Hartal P.G. & Fuhrmann J.J. 1990. Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 43: 1670–1680.

    Google Scholar 

  • Doan T.T., Ngo P.T., Rumpel C., Bo Van Nguyene B.V. & Jouquet P. 2013. Interactions between compost, vermicompost and earthworm influence plant growth and yield: a one-year greenhouse experiment. Sci. Horticult. 160: 148–154.

    Article  Google Scholar 

  • Edwards C.A. 1998. The use of earthworms in the breakdown and management of organic wastes, pp. 327–354. In: Edwards C.A. (ed.), Earthworm Ecology. CRC Press, Boca Raton.

    Google Scholar 

  • Edwards C.A. & Bohlen P.J. 1996. Biology and Ecology of Earthworms. Chapman and Hall, London, 426 pp.

    Google Scholar 

  • Gaur A.C. 1990. Phosphate Solubilizing Micro-organisms as Biofertilizer. Omega Scientific Publishers, New Delhi, 176 pp.

    Google Scholar 

  • Gopalakrishnan S., Humayun P., Kiran B.K., Kannan I.G.K., Vidya M.S., Deepthi K. & Rupela O. 2011. Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World J. Microbiol. Biotechnol. 27: 1313–1321.

    Article  CAS  Google Scholar 

  • Gupta C.P., Kumar C.P., Dubey R.C. & Maheshwari D.K. 2002. Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biol. Fertil. Soils 35: 399–405.

    Article  CAS  Google Scholar 

  • Hurlbert S.H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52: 577–586.

    Article  Google Scholar 

  • Jha C. K., Patel D., Rajendran N. & Saraf M. 2010. Combinatorial assessment on dominance and informative diversity of PGPR from rhizosphere of Jatropha curcas L. J. Basic Microbiol. 50: 211–217.

    Article  PubMed  Google Scholar 

  • Jha C.K. & Saraf M. 2011. In vitro evaluation of indigenous plant growth promoting rhizobacteria isolated from Jatropha curcas rhizosphere. Int. J. Gene Eng. Biotechnol. 2: 91–100.

    Google Scholar 

  • Kaiser M.J., Ramsay K., Richardson C.A., Spence F.E. & Brand A.R. 2000. Chronic fishing disturbance has changed shelf sea benthic community structure. J. Anim. Ecol. 69: 494–503.

    Article  Google Scholar 

  • Kemmitt S.J., Wright D., Goulding K.W.T. & Jones D.L. 2006. pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol. Biochem. 38: 898–911.

    Article  CAS  Google Scholar 

  • Kishore G.K., Pande S. & Podile A.R. 2005. Phylloplane bacteria increase seedling emergence, growth and yield of field-grown groundnut (Arachis hypogaea L.). Lett. Appl. Microbiol. 40: 260–268.

    Article  CAS  PubMed  Google Scholar 

  • Magurran A.E. & McGill B.J. 2011. Biological Diversity: Frontiers in Measurement and Assessment. Oxford University Press, New York.

    Google Scholar 

  • Makulec G. 2002. The role of Lumbricus rubellus Hoffm. in determining biotic and abiotic properties of peat soils. Pol. J. Ecol. 50: 301–339.

    CAS  Google Scholar 

  • Margalef R. 1972. Homage to Evelyn Hutchinson, or why is there an upper limit to diversity? Trans. Connect. Acad. Arts Sci. 44: 243–253.

    Google Scholar 

  • Menhinick E.F. 1964. A comparison of some species individual diversity indices applied to samples of field insects. Ecology 45: 859–861.

    Article  Google Scholar 

  • Morrison S.M. & Askeland R.A. 1983. Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. Appl. Environ. Microbiol. 45: 1802–1807.

    PubMed Central  PubMed  Google Scholar 

  • Muleta D., Assefs F., Borjesson E., & Granhall U. 2013. Phosphate solubilizing rhizobacteria associated with Coffea arabica L. in natural coffee forests of southwestern Ethiopia. J. Saudi Soc. Agric. Sci. 12: 73–84.

    Google Scholar 

  • Patel D., Jha C.K., Tank N. & Saraf M. 2011. Growth enhancement of chickpea in saline soils using plant growth-promoting rhizobacteria. J. Plant Growth Regul. 31: 53–62.

    Article  Google Scholar 

  • Pandya U. & Saraf M. 2010. Role of single fungal isolates and consortia as plant growth promoters under saline conditions. Res. J. Biotechnol. 5: 5–9.

    Article  Google Scholar 

  • Pandya U. & Saraf M. 2013. Integrated diseases management in groundnut for sustainable productivity, pp. 351–377. In: Maheshwari D.K., Saraf M. & Aeron A. (eds), Bacteria in Agrobiology: Crop Productivity. Springer-Verlag Berlin, Heidelberg.

    Chapter  Google Scholar 

  • Pielou E.C. 1969. An Introduction to Mathematical Ecology. John Wiley & Sons, New York, 286 pp.

    Google Scholar 

  • Pielou E.C. 1975. Ecological Diversity. Wiley InterScience, New York, 165 pp.

    Google Scholar 

  • Pesqueira J., Garcia M.D., Staltari S. & del Carmen Molina M. 2006. NaCl effects in Zea mays L. × Tripsacum dactyloides (L.) L. hybrid calli and plants. Electronic J. Biotechnol. 9: 286–290.

    Article  CAS  Google Scholar 

  • Rico A., Ortiz-Barredo A., Ritter E. & Murillo J. 2004. Genetic characterization of Erwinia amylovora strains by amplified fragment length polymorphism. J. Appl. Microbiol. 96: 302–310.

    Article  CAS  PubMed  Google Scholar 

  • Sambrook J., Fritsch F.E. & Maniatis T.A. 1989. Molecular Cloning: A Laboratory Manual, 2nd Edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  • Saraf M., Jha C.K. & Patel D. 2010. The role of ACC deaminase producing PGPR in sustainable agriculture, pp. 365–386. In: Maheshwari D.K. (ed.), Plant Growth and Health Promoting Bacteria. Microbiology Monographs, Springer-Verlag, Berlin, Heidelberg.

    Chapter  Google Scholar 

  • Saraf M., Thakker A. & Patel B.V. 2008. Biocontrol activity of different species of Pseudomonas against phytopathogenic fungi in vivo and in vitro conditions. Int. J. Biotechnol. Biochem. 4: 217–226.

    Google Scholar 

  • Sarwar M. & Kremer R.J. 1995. Enhanced suppression of plant growth through production of L-tryptophan derived compounds by deleterious rhizobacteria. Plant Soil 172: 261–269.

    Article  CAS  Google Scholar 

  • Schwyn B. & Neilands J.B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160: 47–56.

    Article  CAS  PubMed  Google Scholar 

  • Sessitsch A., Howieson J.G., Perret X., Antoun H. & Martínez-Romero E. 2002. Advances in Rhizobium research. Crit. Rev. Plant Sci. 21: 323–378.

    Article  CAS  Google Scholar 

  • Shanon C.E. & Weaver W. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL.

    Google Scholar 

  • Simpson E.H. 1949. Measurement of diversity. Nature 163: 688.

    Article  Google Scholar 

  • Skidmore A.M. & Dickinson C.H. 1976. Colony interaction and hyphal interference between Septoria nodorum and phylloplane fungi. Trans British Mycol. Soc. 66: 57–60.

    Article  Google Scholar 

  • Smith B. & Wilson J. B. 1996. A consumer’s guide to evenness indices. Oikos 76: 70–82.

    Article  Google Scholar 

  • Sinha R.K., Agarwal S., Chauhan K. & Valani D. 2010. The wonders of earthworms and its vermicompost in farm production: Charles Darwin’s ‘afriends of farmers’, with potential to replace destructive chemical fertilizers from agriculture. Agric. Sci. 1: 76–94.

    Google Scholar 

  • Sinha R.K., Heart S., Valani D. & Chauhan K. 2009. Vermiculture and sustainable agriculture. Am-Euras J. Agric. Environ. Sci. 5: 1–55.

    Article  Google Scholar 

  • Singh N., Kumar S., Bajpai V.K., Dubey R.C., Maheshwari D.K. & Kang S.C. 2010. Biological control of M. phaseolina by chemotactic fluorescent P. aeruginosa PN1 and its plant growth promotory activity in chirpine. Crop Prot. 29: 1142–1147.

    Article  Google Scholar 

  • Spiertz J.H.J. 2010. Nitrogen, sustainable agriculture and food security: a review. Agron. Sustain. Dev. 30: 43–55.

    Article  CAS  Google Scholar 

  • Stefan M., Munteanu N., Stoleru V., Mihasan M. & Hritcu L. 2013. Seed inoculation with plant growth promoting rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.) Sci. Horticult. 151: 22–29.

    Article  Google Scholar 

  • Tamura K., Dudley J., Nei M. & Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Tank N., Rajendran N., Patel B. & Saraf M. 2012. Evaluation and biochemical characterization of a distinctive pyoverdin from a Pseudomonas isolated from chickpea rhizosphere. Braz. J. Microbiol. 43: 639–648.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tiana Y., Zhangc X., Wang W. & Gao L. 2013. Soil microbial communities associated with the rhizosphere of cucumber under different summer cover crops and residue management: a 4-year field experiment. Sci. Horticult. 150: 100–109.

    Article  Google Scholar 

  • Whittaker R.H. 1972. Evolution and measurement of species diversity. Taxon 21: 213–251.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meenu Saraf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandya, U., Maheshwari, D.K. & Saraf, M. Assessment of ecological diversity of rhizobacterial communities in vermicompost and analysis of their potential to improve plant growth. Biologia 69, 968–976 (2014). https://doi.org/10.2478/s11756-014-0406-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11756-014-0406-4

Key words

Navigation