Skip to main content
Log in

Chemical preparation and applications of silver dendrites

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Silver dendrites have received immense attention because of their fascinating hierarchical structures and unique properties. Depending on the methods of synthesis, Ag dendrites can be implemented in numerous fields. This review summarizes a variety of Ag dendrites preparation techniques. The involved growth mechanisms are investigated in order to control the formation progress more effectively. With regard to the applications, this article mainly focuses on surface enhanced Raman spectroscopy, catalysis, superhydrophobic surface and surface enhanced fluorescence by using Ag dendrites. The remaining issues of the preparation methods, which impede the practical applications of Ag dendrites, are pointed out to enlighten their future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasi, N., Shahbazi, P., & Kiani, A. (2013). Electrocatalytic oxidation of ethanol at Pd/Ag nanodendrites prepared via low support electrodeposition and galvanic replacement. Journal of Materials Chemistry A, 1, 9966–9972. DOI: 10.1039/c3ta10706j.

    Article  CAS  Google Scholar 

  • Avizienis, A. V., Martin-Olmos, C., Sillin, H. O., Aono, M., Gimzewski, J. K., & Stieg, A. Z. (2013). Morphological transitions from dendrites to nanowires in the electroless deposition of silver. Crystal Growth & Design, 13, 465–469. DOI: 10.1021/cg301692n.

    Article  CAS  Google Scholar 

  • Carro, P., Ambrosolio, S., Marchiano, S. L., Creus, A. H., Salvarezza, R. C., & Arvia, A. J. (1995). Transport phenomena and growth modes of silver electrodeposits. Journal of Electroanalytical Chemistry, 396, 183–195. DOI: 10.1016/0022-0728(95)04196-u.

    Article  Google Scholar 

  • Chen, S., & Carroll, D. L. (2002). Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters, 2, 1003–1007. DOI: 10.1021/nl025674h.

    Article  CAS  Google Scholar 

  • Chen, X., Jia, B., Saha, J. K., Cai, B., Stokes, N., Qiao, Q., Wang, Y., Shi, Z., & Gu, M. (2012). Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Letters, 12, 2187–2192. DOI: 10.1021/nl203463z.

    Article  CAS  Google Scholar 

  • Cheng, W. M., Wang, C. C., & Chen, C. Y. (2010). Preparing chelated copolymer membrane for fabrication of Ag dendrites. Journal of Colloid Interface Science, 348, 49–56. DOI: 10.1016/j.jcis.2010.04.040.

    Article  CAS  Google Scholar 

  • Ding, H. P., Xin, G. Q., Chen, K. C., Zhang, M., Liu, Q., Hao, J., & Liu, H. G. (2010). Silver dendritic nanostructures formed at the solid/liquid interface via electroless deposition. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 353, 166–171. DOI: 10.1016/j.colsurfa.2009.11.008.

    Article  CAS  Google Scholar 

  • Dong, B., Song, H., Yu, L., Bai, X., Wang, Y., Xu, L., & Chen, J. (2010). High voltage preparation, characterization, and optical properties of silver dendrites in PVA matrix. Frontiers of Optoelectronics in China, 3, 205–210. DOI: 10.1007/s12200-010-0004-1.

    Article  Google Scholar 

  • Dong, J., Zheng, H., Yan, X., Sun, Y., & Zhang, Z. (2012). Fabrication of flower-like silver nanostructure on the Al substrate for surface enhanced fluorescence. Applied Physics Letters, 100, 051112. DOI: 10.1063/1.3681420.

    Article  Google Scholar 

  • Fang, J., Ding, B., & Song, X. (2008). Self-assembly ability of building units in mesocrystal, structural, and morphological transitions in Ag nanostructures growth. Crystal Growth & Design, 8, 3616–3622. DOI: 10.1021/cg8001543.

    Article  CAS  Google Scholar 

  • Fang, J., Hahn, H., Krupke, R., Schramm, F., Scherer, T., Ding, B., & Song, X. (2009). Silver nanowires growth via branch fragmentation of electrochemically grown silver dendrites. Chemical Communications, 2009, 1130–1132. DOI: 10.1039/b819003h.

    Article  Google Scholar 

  • Fu, J., Ye, W., & Wang, C. (2013). Facile synthesis of Ag dendrites on Al foil via galvanic replacement reaction with [Ag(NH3)2]Cl for ultrasensitive SERS detecting of biomolecules. Materials Chemistry and Physics, 141, 107–113. DOI: 10.1016/j.matchemphys.2013.04.031.

    Article  CAS  Google Scholar 

  • Gao, X., Gu, G., Hu, Z., Guo, Y., Fu, X., & Song, J. (2005). A simple method for preparation of silver dendrites. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 254, 57–61. DOI: 10.1016/j.colsurfa.2004.11.009.

    Article  CAS  Google Scholar 

  • Gu, C., & Zhang, T. Y. (2008). Electrochemical synthesis of silver polyhedrons and dendritic films with superhydrophobic surfaces. Langmuir, 24, 12010–12016. DOI: 10.1021/la802354n.

    Article  CAS  Google Scholar 

  • Guadagnini, L., Ballarin, B., & Tonelli, D. (2013). Dendritic silver nanostructures obtained via one-step electrosynthesis: effect of nonanesulfonic acid and polyvinylpyrrolidone as additives on the analytical performance for hydrogen peroxide sensing. Journal of Nanoparticle Research, 15, 1971. DOI: 10.1007/s11051-013-1971-0.

    Article  Google Scholar 

  • Gutés, A., Carraro, C., & Maboudian, R. (2010). Silver dendrites from galvanic displacement on commercial aluminum foil as an effective SERS substrate. Journal of the American Chemical Society, 132, 1476–1477. DOI: 10.1021/ja909806t.

    Article  Google Scholar 

  • Han, Y., Liu, S., Han, M., Bao, J., & Dai, Z. (2009). Fabrication of hierarchical nanostructure of silver via a surfactant-free mixed solvents route. Crystal Growth & Design, 9, 3941–3947. DOI: 10.1021/cg900066z.

    Article  CAS  Google Scholar 

  • He, R., Qian, X., Yin, J., & Zhu, Z. (2003). Formation of silver dendrites under microwave irradiation. Chemical Physics Letters, 369, 454–458. DOI: 10.1016/s0009-2614(02)02036-5.

    Article  CAS  Google Scholar 

  • He, L., Lin, M., Li, H., & Kim, N. J. (2010). Surface-enhanced Raman spectroscopy coupled with dendritic silver nanosubstrate for detection of restricted antibiotics. Journal of Raman Spectroscopy, 41, 739–744. DOI: 10.1002/jrs.2505.

    CAS  Google Scholar 

  • Hong, X., Wang, G. Z., Wang, Y., Zhu, W., & Shen, X. S. (2010). Controllable electrochemical synthesis of silver dendritic nanostructures and their SERS properties. Chinese Journal of Chemical Physics, 23, 596–602. DOI: 10.1088/1674-0068/23/05/596-602.

    Article  CAS  Google Scholar 

  • Huang, J., Vongehr, S., Tang, S., Lu, H., Shen, J., & Meng, X. (2009). Ag dendrite-based Au/Ag bimetallic nanostructures with strongly enhanced catalytic activity. Langmuir, 25, 11890–11896. DOI: 10.1021/la9015383.

    Article  CAS  Google Scholar 

  • Jiang, Z., Lin, Y., & Xie, Z. (2012). Structural investigations and growth mechanism of well-defined Ag dendrites prepared by conventional redox displacement. Materials Chemistry and Physics, 134, 762–767. DOI: 10.1016/j.matchemphys.2012.03.065.

    Article  CAS  Google Scholar 

  • Jin, R., Cao, Y., Mirkin, C. A., Kelly, K. L., Schatz, G. C., & Zheng, J. G. (2001). Photoinduced conversion of silver nanospheres to nanoprisms. Science, 294, 1901–1903. DOI: 10.1126/science.1066541.

    Article  CAS  Google Scholar 

  • Kang, Z., Wang, E., Lian, S., Mao, B., Chen, L., & Xu, L. (2005). Surfactant-assisted electrochemical method for dendritic silver nanocrystals with advanced structure. Materials Letters, 59, 2289–2291. DOI: 10.1016/j.matlet.2005.03.005.

    Article  CAS  Google Scholar 

  • Kang, Y., & Chen, F. (2013). Preparation of Ag-Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property. Journal of Applied Electrochemistry, 43, 667–677. DOI: 10.1007/s10800-013-0563-0.

    Article  Google Scholar 

  • Kaniyankandy, S., Nuwad, J., Thinaharan, C., Dey, G. K., & Pillai, C. G. S. (2007). Electrodeposition of silver nanodendrites. Nanotechnology, 18, 125610. DOI: 10.1088/0957-4484/18/12/125610.

    Article  Google Scholar 

  • Keita, B., Brudna Holzle, L. R., Ngo Biboum, R., Nadjo, L., Mbomekalle, I. M., Franger, S., Berthet, P., Brisset, F., Miserque, F., & Ekedi, G. A. (2011). Green wet chemical route for the synthesis of silver and palladium dendrites. European Journal of Inorganic Chemistry, 2011, 1201–1204. DOI: 10.1002/ejic.201001259.

    Article  Google Scholar 

  • Lei, Z., Hu, B., & Yang, H. (2008). Synthesis of different crystalline silver nanocomposites stabilized by an amphiphilic block copolymer. Materials Letters, 62, 1424–1426. DOI: 10.1016/j.matlet.2007.08.077.

    Article  CAS  Google Scholar 

  • Liu, P., Yang, S., Fang, M., Luo, X., & Cai, W. (2011a). Complex nanostructures synthesized from nanoparticle colloids under an external electric field. Nanoscale, 3, 3933–3940. DOI: 10.1039/c1nr10808e.

    Article  CAS  Google Scholar 

  • Liu, R., Li, S., Yu, X., Zhang, G., Ma, Y., Yao, J., Keita B., & Nadjo, L. (2011b). Polyoxometalate-assisted galvanic replacement synthesis of silver hierarchical dendritic structures. Crystal Growth & Design, 11, 3424–3431. DOI: 10.1021/cg2001333.

    Article  CAS  Google Scholar 

  • Liu, B., & Wang, M. (2013). Electrodeposition of dendritic silver nanostructures and their application as hydrogen peroxide sensor. International Journal of Electrochemical Science, 8, 8572–8578.

    CAS  Google Scholar 

  • Lu, L., Kobayashi, A., Kikkawa, Y., Tawa, K., & Ozaki, Y. (2006). Oriented attachment-based assembly of dendritic silver nanostructures at room temperature. The Journal of Physical Chemistry B, 110, 23234–23241. DOI: 10.1021/jp063978c.

    Article  CAS  Google Scholar 

  • Maillard, M., Huang, P., & Brus, L. (2003). Silver nanodisk growth by surface plasmon enhanced photoreduction of adsorbed [Ag+]. Nano Letters, 3, 1611–1615. DOI: 10.1021/nl034666d.

    Article  CAS  Google Scholar 

  • Martin, C. R. (1994). Nanomaterials: A membrane-based synthetic approach. Science, 266, 1961–1966. DOI: 10.1126/science.266.5193.1961.

    Article  CAS  Google Scholar 

  • Martínez-Castañón, G., Martínez, J. R., Ortega Zarzosa, G., Ruiz, F., & Sánchez-Loredo, M. G. (2005). Optical absorption of Ag particles dispersed in a SiO2 amorphous matrix. Journal of Sol-Gel Science and Technology, 36, 137–145. DOI: 10.1007/s10971-005-5285-2.

    Article  Google Scholar 

  • Mason, T. J., Lorimer, J. P., & Walton, D. J. (1990). Sonoelectrochemistry. Ultrasonics, 28, 333–337. DOI: 10.1016/0041-624x(90)90041-l.

    Article  CAS  Google Scholar 

  • Mlambo, M., Mpelane, S., Mdluli, P. S., Mashazi, P., Sikhwivhilu, L., Moloto, N., & Moloto, M. J. (2013). Unique flexible silver dendrites thin films fabricated on cellulose dialysis cassettes. Journal of Materials Science, 48, 6418–6425. DOI: 10.1007/s10853-013-7442-2.

    Article  CAS  Google Scholar 

  • Nadagouda, M. N., Speth, T. F., & Varma, R. S. (2011). Microwave-assisted green synthesis of silver nanostructures. Accounts of Chemical Research, 44, 469–478. DOI: 10.1021/ar1001457.

    Article  CAS  Google Scholar 

  • Noroozi, M., Zakaria, A., Moksin, M. M., Wahab, Z. A., & Abedini, A. (2012). Green formation of spherical and dendritic silver nanostructures under microwave irradiation without reducing agent. International Journal of Molecular Sciences, 13, 8086–8096. DOI: 10.3390/ijms13078086.

    Article  CAS  Google Scholar 

  • Personick, M. L., Langille, M. R., Zhang, J., Wu, J., Li, S., & Mirkin, C. A. (2013). Plasmon-mediated synthesis of silver cubes with unusual twinning structures using short wavelength excitation. Small, 9, 1947–1953. DOI: 10.1002/smll.201202451.

    Article  CAS  Google Scholar 

  • Pieczonka, N. P. W., Moula, G., & Aroca, R. F. (2009). SERRS for single-molecule detection of dye-labeled phospholipids in Langmuir-Blodgett monolayers. Langmuir, 25, 11261–11264. DOI: 10.1021/la902486w.

    Article  CAS  Google Scholar 

  • Pradhan, N., Pal, A., & Pal, T. (2001). Catalytic reduction of aromatic nitro compounds by coinage metal nanoparticles. Langmuir, 17, 1800–1802. DOI: 10.1021/la000862d.

    Article  CAS  Google Scholar 

  • Qin, X., Wang, H., Wang, X., Miao, Z., Fang, Y., Chen, Q., & Shao, X. (2011). Synthesis of dendritic silver nanostructures and their application in hydrogen peroxide electroreduction. Electrochimica Acta, 56, 3170–3174. DOI: 10.1016/j.electacta.2011.01.058.

    Article  CAS  Google Scholar 

  • Qiu, T., Wu, X. L., Mei, Y. F., Chu, P. K., & Siu, G. G. (2005). Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method. Applied Physics A, 81, 669–671. DOI: 10.1007/s00339-005-3263-8.

    Article  CAS  Google Scholar 

  • Rashid, M. H., & Mandal, T. K. (2007). Synthesis and catalytic application of nanostructured silver dendrites. The Journal of Physical Chemistry C, 111, 16750–16760. DOI: 10.1021/jp074963x.

    Article  CAS  Google Scholar 

  • Ren, W., Guo, S., Dong, S., & Wang, E. (2011a). Ag dendrites with rod-like tips: synthesis, characterization and fabrication of superhydrophobic surfaces. Nanoscale, 3, 2241–2246. DOI: 10.1039/c1nr10074b.

    Article  CAS  Google Scholar 

  • Ren, W., Guo, S., Dong, S., & Wang, E. (2011b). A simple route for the synthesis of morphology-controlled and SERS-active Ag dendrites with near-infrared absorption. The Journal of Physical Chemistry C, 115, 10315–10320. DOI: 10.1021/jp110532c.

    Article  CAS  Google Scholar 

  • Sawangphruk, M., Pinitsoontorn, S., & Limtrakul, J. (2012). Surfactant-assisted electrodeposition and improved electrochemical capacitance of silver-doped manganese oxide pseudocapacitor electrodes. Journal of Solid State Electrochemistry, 16, 2623–2629. DOI: 10.1007/s10008-012-1691-x.

    Article  CAS  Google Scholar 

  • Shao, I., & Gignac, L. (2012). Mechanism study of Ag catalyzed directional etch of silicon for nanowire formation. ECS Transactions, 41, 9–25. DOI: 10.1149/1.3699374.

    Article  CAS  Google Scholar 

  • Song, W., Cheng, Y., Jia, H., Xu, W., & Zhao, B. (2006). Surface enhanced Raman scattering based on silver dendrites substrate. Journal of Colloid Interface Science, 298, 765–768. DOI: 10.1016/j.jcis.2006.01.037.

    Article  CAS  Google Scholar 

  • Sulka, G. D., & Jaskuła, M. (2006a). Temperature influence on the morphology and roughness of silver deposit formed by cementation. Helvetica Chimica Acta, 89, 427–441. DOI: 10.1002/hlca.200690043.

    Article  CAS  Google Scholar 

  • Sulka, G. D., & Jaskuła, M. (2006b). Effect of sulphuric acid and copper sulphate concentrations on the morphology of silver deposit in the cementation process. Electrochimica Acta, 51, 6111–6119. DOI: 10.1016/j.electacta.2005.12.051.

    Article  CAS  Google Scholar 

  • Sun, X., & Hagner, M. (2007). Novel preparation of snowflake-like dendritic nanostructures of Ag or Au at room temper ature via a wet-chemical route. Langmuir, 23, 9147–9150. DOI: 10.1021/la701519x.

    Article  CAS  Google Scholar 

  • Taleb, A., Mangeney, C., & Ivanova, V. (2011). Electrochemical synthesis using a self-assembled Au nanoparticle template of dendritic films with unusual wetting properties. Nanotechnology, 22, 205301. DOI: 10.1088/0957-4484/22/20/205301.

    Article  Google Scholar 

  • Tang, S., Meng, X., Lu, H., & Zhu, S. (2009). PVP-assisted sonoelectrochemical growth of silver nanostructures with various shapes. Materials Chemistry and Physics, 116, 464–468. DOI: 10.1016/j.matchemphys.2009.04.004.

    Article  CAS  Google Scholar 

  • Tang, S., Vongehr, S., Wan, N., & Meng, X. (2013). Rapid synthesis of pentagonal silver nanowires with diameterdependent tensile yield strength. Materials Chemistry and Physics, 142, 17–26. DOI: 10.1016/j.matchemphys.2013.06.023.

    Article  CAS  Google Scholar 

  • Varshney, R., Bhadauria, S., & Gaur, M. S. (2010). Biogenic synthesis of silver nanocubes and nanorods using sundried Stevia rebaudiana leaves. Advanced Materials Letters, 1, 232–237. DOI: 10.5185/amlett.2010.9155.

    Article  Google Scholar 

  • Wang, S., & Xin, H. (2000). Fractal and dendritic growth of metallic Ag aggregated from different kinds of Γ-irradiated solutions. The Journal of Physical Chemistry B, 104, 5681–5685. DOI: 10.1021/jp000225w.

    Article  CAS  Google Scholar 

  • Wang, X., Naka, K., Itoh, H., Park, S., & Chujo, Y. (2002). Synthesis of silver dendritic nanostructures protected by tetrathiafulvalene. Chemical Communications, 2002, 1300–1301. DOI: 10.1039/b203185j.

    Article  Google Scholar 

  • Wang, Z., Zhao, Z., & Qiu, J. (2008). A general strategy for synthesis of silver dendrites by galvanic displacement under hydrothermal conditions. Journal of Physics and Chemistry of Solids, 69, 1296–1300. DOI: 10.1016/j.jpcs.2007.10.089.

    Article  CAS  Google Scholar 

  • Wang, L., Li, H., Tian, J., & Sun, X. (2010). Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: Rapid, large-scale, wet-chemical synthesis and their application as SERS substrates. ACS Applied Materials & Interfaces, 2, 2987–2991. DOI: 10.1021/am100968j.

    Article  CAS  Google Scholar 

  • Wang, X., Liu, X., & Wang, X. (2011). Self-assembled synthesis of Ag nanodendrites and their applications to SERS. Journal of Molecular Structure, 997, 64–69. DOI: 10.1016/j.molstruc.2011.04.041.

    Article  CAS  Google Scholar 

  • Wang, S., Xu, L. P., Wen, Y., Du, H., Wang, S., & Zhang, X. (2013). Space-confined fabrication of silver nanodendrites and their enhanced SERS activity. Nanoscale, 5, 4284–4290. DOI: 10.1039/c3nr00313b.

    Article  CAS  Google Scholar 

  • Wei, Y., Chen, Y., Ye, L., & Chang, P. (2011). Preparation of dendritic-like Ag crystals using monocrystalline silicon as template. Materials Research Bulletin, 46, 929–936. DOI: 10.1016/j.materresbull.2011.02.025.

    Article  CAS  Google Scholar 

  • Welch, C. M., Banks, C. E., Simm, A. O., & Compton, R. G. (2005). Silver nanoparticle assemblies supported on glassycarbon electrodes for the electro-analytical detection of hydrogen peroxide. Analytical and Bioanalytical Chemistry, 382, 12–21. DOI: 10.1007/s00216-005-3205-5.

    Article  CAS  Google Scholar 

  • Wen, X., Xie, Y. T., Mak, M. W. C., Cheung, K. Y., Li, X. Y., Renneberg, R., & Yang, S. (2006). Dendritic nanostructures of silver: Facile synthesis, structural characterizations, and sensing applications. Langmuir, 22, 4836–4842. DOI: 10.1021/la060267x.

    Article  CAS  Google Scholar 

  • Xia, Y., & Wang, J. (2011). Hierarchical silver nanodendrites: One-step preparation and application for SERS. Materials Chemistry and Physics, 125, 267–270. DOI: 10.1016/j.matchemphys.2010.09.022.

    Article  CAS  Google Scholar 

  • Xiao, J., Xie, Y., Tang, R., Chen, M., & Tian, X. (2001). Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures. Advanced Materials, 13, 1887–1891. DOI: 10.1002/1521-4095(200112)13:24〈1887:: AID-ADMA1887〉3.0.CO;2-2.

    Article  CAS  Google Scholar 

  • Xie, S., Zhang, X., Xiao, D., Paau, M. C., Huang, J., & Choi, M. M. F. (2011). Fast growth synthesis of silver dendrite crystals assisted by sulfate ion and its application for surfaceenhanced Raman scattering. The Journal of Physical Chemistry C, 115, 9943–9951. DOI: 10.1021/jp201484r.

    Article  CAS  Google Scholar 

  • Xie, S., Zhang, X., Yang, S., Paau, M. C., Xiao, D., & Choi, M. M. F. (2012). Liesegang rings of dendritic silver crystals emerging from galvanic displacement reaction in a liquid-phase solution. RSC Advances, 2, 4627–4631. DOI: 10.1039/c2ra20055d.

    Article  CAS  Google Scholar 

  • Yang, J. C., Chen, C. H., & Wu, R. J. (2012). Facile growth of silver crystals with greatly varied morphologies by PEOPPO-PEO tri-block copolymers. CrystEngComm, 14, 2871–2878. DOI: 10.1039/c2ce06385a.

    Article  CAS  Google Scholar 

  • Ye, W., Chen, Y., Zhou, F., Wang, C., & Li, Y. (2012). Fluorideassisted galvanic replacement synthesis of Ag and Au dendrites on aluminum foil with enhanced SERS and catalytic activities. Journal of Materials Chemistry, 22, 18327–18334. DOI: 10.1039/c2jm32170j.

    Article  CAS  Google Scholar 

  • Yi, Q., & Song, L. (2012). Polyaniline-modified silver and binary silver-cobalt catalysts for oxygen reduction reaction. Electroanalysis, 24, 1655–1663. DOI: 10.1002/elan.201200154.

    Article  CAS  Google Scholar 

  • Yi, Z., Chen, S., Chen, Y., Luo, J., Wu, W., Yi, Y., & Tang, Y. (2012). Preparation of dendritic Ag/Au bimetallic nanostructures and their application in surface-enhanced Raman scattering. Thin Solid Films, 520, 2701–2707. DOI: 10.1016/j.tsf.2011.11.042.

    Article  CAS  Google Scholar 

  • You, T., Niwa, O., Tomita, M., & Hirono, S. (2003). Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Analytical Chemistry, 75, 2080–2085. DOI: 10.1021/ac026337w.

    Article  CAS  Google Scholar 

  • Yu, A., Zhang, X., Zhang, H., Han, D., & Knight, A. R. (2011). Preparation and electrochemical properties of gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films. Electrochimica Acta, 56, 9015–9019. DOI: 10.1016/j.electacta.2011.02.100.

    Article  CAS  Google Scholar 

  • Yu, A., Wang, Q., Yong, J., Mahon, P. J., Malherbe, F., Wang, F., Zhang, H., & Wang, J. (2012). Silver nanoparticlecarbon nanotube hybrid films: Preparation and electrochemical sensing. Electrochimica Acta, 74, 111–116. DOI: 10.1016/j.electacta.2012.04.024.

    Article  CAS  Google Scholar 

  • Zhang, X., Shi, F., Niu, J., Jiang, Y., & Wang, Z. (2008). Superhydrophobic surfaces: from structural control to functional application. Journal of Materials Chemistry, 18, 621–633. DOI: 10.1039/b711226b.

    Article  CAS  Google Scholar 

  • Zhang, J., Huang, F., & Lin, Z. (2010). Progress of nanocrystalline growth kinetics based on oriented attachment. Nanoscale, 2, 18–34. DOI: 10.1039/b9nr00047j.

    Article  Google Scholar 

  • Zhang, G., Sun, S., Banis, M. N., Li, R., Cai, M., & Sun, X. (2011). Morphology-controlled green synthesis of single crystalline silver dendrites, dendritic flowers, and rods, and their growth mechanism. Crystal Growth & Design, 11, 2493–2499. DOI: 10.1021/cg200256j.

    Article  CAS  Google Scholar 

  • Zhang, Q. X., Chen, Y. X., Guo, Z., Liu, H. L., Wang, D. P., & Huang, X. J. (2013). Bioinspired multifunctional heterohierarchical micro/nanostructure tetragonal array with selfcleaning, anticorrosion, and concentrators for the SERS detection. ACS Applied Materials & Interfaces, 5, 10633–10642. DOI: 10.1021/am403534z.

    Article  CAS  Google Scholar 

  • Zheng, Z., Tang, S., Vongehr, S., & Meng, X. (2011). Squarewave electrochemical growth of lying three-dimensional silver dendrites with high surface-enhanced Raman scattering activities. Materials Chemistry and Physics, 129, 594–598. DOI: 10.1016/j.matchemphys.2011.04.070.

    Article  CAS  Google Scholar 

  • Zhou, Y., Yu, S. H., Wang, C. Y., Li, X. G., Zhu, Y. R., & Chen, Z. Y. (1999). A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Advanced Materials, 11, 850–852. DOI: 10.1002/(SICI)1521-4095(199907)11:10〈850::AIDADMA850〉3.3.CO;2-Q.

    Article  CAS  Google Scholar 

  • Zhu, J., Liu, S., Palchik, O., Koltypin, Y., & Gedanken, A. (2000). Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir, 16, 6396–6399. DOI: 10.1021/la991507u.

    Article  CAS  Google Scholar 

  • Zhu, Y., Zheng, H., Li, Y., Gao, L., Yang, Z., & Qian, Y. (2003). Synthesis of Ag dendritic nanostructures by using anisotropic nickel nanotubes. Materials Research Bulletin, 38, 1829–1834. DOI: 10.1016/j.materresbull.2003.08.004.

    Article  CAS  Google Scholar 

  • Zou, K., Zhang, X. H., Duan, X. F., Meng, X. M., & Wu, S. K. (2004). Seed-mediated synthesis of silver nanostructures and polymer/silver nanocables by UV irradiation. Journal of Crystal Growth, 273, 285–291. DOI: 10.1016/j.jcrysgro.2004.08.016.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Fu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Tamanna, T., Hu, WJ. et al. Chemical preparation and applications of silver dendrites. Chem. Pap. 68, 1283–1297 (2014). https://doi.org/10.2478/s11696-014-0582-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0582-2

Keywords

Navigation