Skip to main content
Log in

Preparation of Ag–Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, dendritic silver–copper (Ag–Cu) nanostructures were synthesised on a copper foil by electrodeposition and subsequently galvanic displacement reaction without any surfactant. The crystalline nature of the nanostructures was examined by X-ray diffraction, and the morphology of the material was investigated by field-emission scanning electron microscopy. The applied potential, displacement reaction time, and silver nitrate solution concentration exerted different effects on the nanoparticle shape. And a possible growth mechanism of the Ag–Cu dendrites was proposed based on the experimental results. The electrochemical properties of the Ag–Cu dendrite-modified electrode were characterised by linear sweep voltammetry. The reduction peak potential of hydrogen peroxide (H2O2) was about −0.25 V (vs. a saturated calomel electrode), which indicated that the as-synthesised Ag–Cu dendrites had favourable electroreduction activity towards hydrogen peroxide. At the same time, we found that the solution pH also affected the electrocatalytic ability of the dendrites for H2O2 reduction, which was important for the design of a NaBH4–H2O2 battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401):43–51. doi:10.1038/nature11115

    Article  CAS  Google Scholar 

  2. Norskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1(1):37–46. doi:10.1038/nchem.121

    Article  CAS  Google Scholar 

  3. Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315(5809):220–222. doi:10.1126/science.1134569

    Article  CAS  Google Scholar 

  4. Anjos DM, Hahn F, Léger JM, Kokoh KB, Tremiliosi-Filho G (2007) In situ FTIRS studies of the electrocatalytic oxidation of ethanol on Pt alloy electrodes. J Solid State Electrochem 11(11):1567–1573. doi:10.1007/s10008-007-0360-y

    Article  CAS  Google Scholar 

  5. Shao-Horn Y, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46(3–4):285–305. doi:10.1007/s11244-007-9000-0

    Article  CAS  Google Scholar 

  6. Current primary and noble metal price, http://www.metalprices.com/ (Accessed 16 October 2012)

  7. Zhao D, Xu BQ (2006) Enhancement of Pt utilization in electrocatalysts by using gold nanoparticles. Angew Chem Int Ed Engl 45(30):4955–4959. doi:10.1002/anie.200600155

    Article  CAS  Google Scholar 

  8. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825):732–735. doi:10.1126/science.1140484

    Article  CAS  Google Scholar 

  9. Jirkovský JS, Panas I, Romani S, Ahlberg E, Schiffrin DJ (2012) Potential-dependent structural memory effects in Au–Pd nanoalloys. J Phys Chem Lett 3:315–321. doi:10.1021/jz201660t

    Article  Google Scholar 

  10. Hickman AJ, Sanford MS (2012) High-valent organometallic copper and palladium in catalysis. Nature 484(7393):177–185. doi:10.1038/nature11008

    Article  CAS  Google Scholar 

  11. Chen WF, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR (2012) Hydrogen-evolution catalysts based on non-noble metal nickel-molybdenum nitride nanosheets. Angew Chem Int Ed Engl 51(25):6131–6135. doi:10.1002/anie.201200699

    Article  CAS  Google Scholar 

  12. Qin X, Wang H, Wang X, Miao Z, Fang Y, Chen Q, Shao X (2011) Synthesis of dendritic silver nanostructures and their application in hydrogen peroxide electroreduction. Electrochim Acta 56(9):3170–3174. doi:10.1016/j.electacta.2011.01.058

    Article  CAS  Google Scholar 

  13. Qiu R, Cha HG et al (2009) Preparation of dendritic copper nanostructures and their characterization for electroreduction. J Phys Chem C 113(36):15891–15896. doi:10.1021/jp904222b

    Article  CAS  Google Scholar 

  14. El-Sayed MA (2001) Some interesting properties of metals confined in time and nanometer space of different shapes. Acc Chem Res 34(4):257–264. doi:10.1021/ar960016n

    Article  CAS  Google Scholar 

  15. Qian HS, Antonietti M, Yu SH (2007) Hybrid “Golden Fleece”: synthesis and catalytic performance of uniform carbon nanofibers and silica nanotubes embedded with a high population of noble-metal nanoparticles. Adv Funct Mater 17(4):637–643. doi:10.1002/adfm.200600657

    Article  CAS  Google Scholar 

  16. Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105(4):1547–1562. doi:10.1021/cr030067f

    Article  CAS  Google Scholar 

  17. Xiong YJ, Washio I, Chen JY, Cai HG, Li ZY, Xia YN (2006) Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir 22(20):8563–8570. doi:10.1021/la061323x

    Article  CAS  Google Scholar 

  18. Wang X, Zhuang J, Peng Q, Li YD (2005) A general strategy for nanocrystal synthesis. Nature 437:121–124. doi:10.1038/nature03968

    Article  CAS  Google Scholar 

  19. Zhou Y, Yu SH, Wang CY, Li XG, Zhu YR, Chen ZY (1999) A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Adv Mater 11(10):850–852. doi:10.1002/(SICI)1521-4095(199907)11:10<850:AID-ADMA850>3.0.:CO;2-Z

    Article  CAS  Google Scholar 

  20. Zhu LP, Xiao HM, Zhang WD, Yang Y, Fu SY (2008) Synthesis and characterization of novel three-dimensional metallic Co dendritic superstructures by a simple hydrothermal reduction route. Cryst Growth Des 8(4):1113–1118. doi:10.1021/cg701036k

    Article  CAS  Google Scholar 

  21. Gu CD, Zhang TY (2008) Electrochemical synthesis of silver polyhedrons and dendritic films with superhydrophobic surfaces. Langmuir 24(20):12010–12016. doi:10.1021/la802354n

    Article  CAS  Google Scholar 

  22. Tian N, Zhou ZY, Sun SG, Cui L, Ren B, Tian ZQ (2006) Electrochemical preparation of platinum nanothorn assemblies with high surface enhanced Raman scattering activity. Chem Commun 39:4090–4092. doi:10.1039/B609164D

    Article  Google Scholar 

  23. Geddes CD, Parfenov A, Gryczynski I, Lakowicz JR (2003) Luminescent blinking from silver nanostructures. J Phys Chem B 107(37):9989–9993. doi:10.1021/jp030290g

    Article  CAS  Google Scholar 

  24. Huang D, Bai X, Zheng L (2011) Ultrafast preparation of three-dimensional dendritic gold nanostructures in aqueous solution and their applications in catalysis and SERS. J Phys Chem C 115(30):14641–14647. doi:10.1021/jp2037284

    Article  CAS  Google Scholar 

  25. Rezaei B, Damiri S (2010) Electrodeposited silver nanodendrites electrode with strongly enhanced electrocatalytic activity. Talanta 83(1):197–204. doi:10.1016/j.talanta.2010.09.006

    Article  CAS  Google Scholar 

  26. Wei G, Nan C, Deng Y, Lin Y (2003) Self-organized synthesis of silver chainlike and dendritic nanostructures via a solvothermal method. Chem Mater 15(23):4436–4441. doi:10.1021/cm034628v

    Article  CAS  Google Scholar 

  27. Chen X, Cui CH, Guo Z, Liu JH, Huang XJ, Yu SH (2011) Unique heterogeneous silver-copper dendrites with a trace amount of uniformly distributed elemental Cu and their enhanced SERS properties. Small 7(7):858–863. doi:10.1002/smll.201002331

    Article  CAS  Google Scholar 

  28. Qin X, Miao Z, Fang Y, Zhang D, Ma J, Zhang L, Chen Q, Shao X (2012) Preparation of dendritic nanostructures of silver and their characterization for electroreduction. Langmuir 28(11):5218–5226. doi:10.1021/la300311v

    Article  CAS  Google Scholar 

  29. Demirci UB (2007) Direct borohydride fuel cell: main issues met by the membrane–electrodes-assembly and potential solutions. J Power Sources 172(2):676–687. doi:10.1016/j.jpowsour.2007.05.009

    Article  CAS  Google Scholar 

  30. Welch CM, Banks CE, Simm AO, Compton RG (2005) Silver nanoparticle assemblies supported on glassy-carbon electrodes for the electro-analytical detection of hydrogen peroxide. Anal Bioanal Chem 382(1):12–21. doi:10.1007/s00216-005-3205-5

    Article  CAS  Google Scholar 

  31. Wu S, Zhao H, Ju H, Shi C, Zhao J (2006) Electrodeposition of silver–DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose. Electrochem Commun 8(8):1197–1203. doi:10.1016/j.elecom.2006.05.013

    Article  CAS  Google Scholar 

  32. Dias VLN, Fernandes EN, da Silva LMS, Marques EP, Zhang J, Marques ALB (2005) Electrochemical reduction of oxygen and hydrogen peroxide catalyzed by a surface copper(II)–2,4,6-tris(2-piridil)-1,3,5-triazine complex adsorbed on a graphite electrode. J Power Sources 142(1–2):10–17. doi:10.1016/j.jpowsour.2004.09.032

    Article  CAS  Google Scholar 

  33. Garjonyè R, Malinauskas A (1998) Electrocatalytic reactions of hydrogen peroxide at carbon paste electrodes modified by some metal hexacyanoferrates. Sens Actuat B 46(3):236–241. doi:10.1016/S0925-4005(98)00123-3

    Article  Google Scholar 

  34. Jaouen F, Dodele JP (2009) O2 reduction mechanism on non-noble metal catalysts for PEM fuel cells. J Phys Chem C 113(34):15433–15443. doi:10.1021/jp900838x

    Article  CAS  Google Scholar 

  35. Jia W, Guo M, Zheng Z, Yu T, Rodriguez EG, Wang Y, Lei Y (2009) Electrocatalytic oxidation and reduction of H2O2 on vertically aligned Co3O4 nanowalls electrode: toward H2O2 detection. J Electroanal Chem 625(1):27–32. doi:10.1016/j.jelechem.2008.09.020

    Article  CAS  Google Scholar 

  36. Qiu J, Peng HZ, Liang RP, Li J, Xia XH (2006) Synthesis, characterization, and immobilization of Prussian blue-modified Au nanoparticles: application to electrocatalytic reduction of H2O2. Langmuir 23(4):2133–2137. doi:10.1021/la062788q

    Article  Google Scholar 

  37. Zeis R, Lei T, Sieradzki K, Snyder J, Erlebacher J (2008) Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. J Catal 253(1):132–138. doi:10.1016/j.jcat.2007.10.017

    Article  CAS  Google Scholar 

  38. Jalan V, Taylor EJ (1983) Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. J Electrochem Soc 130(11):2299–2302. doi:10.1149/1.2119574

    Article  CAS  Google Scholar 

  39. de Lara González GL, Kahlert H, Scholz F (2007) Catalytic reduction of hydrogen peroxide at metal hexacyanoferrate composite electrodes and applications in enzymatic analysis. Electrochim Acta 52(5):1968–1974. doi:10.1016/j.electacta.2006.08.006

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Grant Nos. 51271148 and 50971100), the Research Fund of State Key Laboratory of Solidification Processing in China (Grant No. 30-TP-2009), and the Aeronautic Science Foundation Program of China (Grant No. 2012ZF53073).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fuyi Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, Y., Chen, F. Preparation of Ag–Cu bimetallic dendritic nanostructures and their hydrogen peroxide electroreduction property. J Appl Electrochem 43, 667–677 (2013). https://doi.org/10.1007/s10800-013-0563-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0563-0

Keywords

Navigation