Skip to main content
Log in

Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Antioxidant capacity of N-(1-naphthyl)valerohydroxamic acid (NVHA) and N-(1-naphthyl)phenylacetohydroxamic acid (NPAHA) has been evaluated by a novel approach employing the fluorescence microscopic single molecule observation method. This method allows direct observation of the changes in single DNA molecules. The DNA cleavage protection activity of the compounds was also assessed by the gel electrophoresis method. The applied methods confirmed that both compounds are capable of inhibiting the free radical mediated DNA damage. Free radical scavenging activity was assessed via the 2,2′-diphenyl-1-picrylhydrazyl free radical (DPPH) and lipid peroxidation inhibition methods. The effective concentration causing a 50 % inhibition of the DPPH concentration, EC50, was found to be 371.54 mM for NVHA and 365.95 mM for NPAHA. Its lipid peroxidation inhibition ability was calculated to be 40.91 % at 371.54 mM for NVHA and 41.14 % at 365.95 mM for NPAHA. These results show the antioxidant potential of the naphthyl hydroxamic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alam, M. N., Bristi, N. J., & Rafiquzzaman, M. (2013). Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharmaceutical Journal, 21, 143–152. DOI: 10.1016/j.jsps.2012.05.002.

    Article  Google Scholar 

  • Ames, B. N., Shigena, M. K., & Hagen, T. M. (1993). Oxidants, antioxidants and the degenerative diseases of aging. The Proceedings of the National Academy of Sciences USA, 90, 7915–7922.

    Article  CAS  Google Scholar 

  • Aruoma, O. I. (1996). Assessment of potential prooxidant and antioxidant actions. Journal of the American Oil Chemists’ Society, 73, 1617–1625. DOI: 10.1007/bf02517962.

    Article  CAS  Google Scholar 

  • Aruoma, O. I., & Cuppett, S. L. (1997). Antioxidant methodology: In vivo and in vitro concepts (pp. 39–51). Champain, IL, USA: AOCS Press.

    Google Scholar 

  • Autore, G., Caruso, A., Marzocco, S., Nicolaus, B., Palladino, C., Pinto, A., Popolo, A., Sinicropi, M. S., Tommonaro, G., & Saturnino, C. (2010). Acetamide derivatives with antioxidant activity and potential anti-inflammatory activity. Molecules, 15, 2028–2038. DOI: 10.3390/molecules15032028.

    Article  CAS  Google Scholar 

  • Behl, C., Skutella, T., Lezoualc’h, F., Post, A., Widmann, M., Newton, C. J., & Holsboer, F. (1997). Neuroprotection against oxidative stress by estrogens: Structure-activity relationship. Molecular Pharmacology, 51, 535–541. DOI: 10.1124/mol.51.4.535.

    CAS  Google Scholar 

  • Broderick, C. E., & Cooke, P. H. (2009). Fruit composition, tissues and localization of antioxidants and capsaicinoids in Capsicum peppers by fluorescence microscopy. Acta Horticulturae, 841, 85–90.

    CAS  Google Scholar 

  • Gupta, V. K., & Tandon, S. G. (1972). Hydroxamic acids. Preparation and properties of N-1-napthylhydroxamic acids. Journal of Chemical & Engineering Data, 17, 248–249. DOI: 10.1021/je60053a008.

    Article  CAS  Google Scholar 

  • Harman, D. (1995). Role of antioxidant nutrients in aging: Overview. Age, 18, 51–62. DOI: 10.1007/bf02432519.

    Article  CAS  Google Scholar 

  • Houseal, T. W., Bustamante, C., Stump, R. F., & Maestre, M. F. (1989). Real-time imaging of single DNA molecules with fluorescence microscopy. Biophysical Journal, 56, 507–516. DOI: 10.1016/s0006-3495(89)82697-9.

    Article  CAS  Google Scholar 

  • Hyogo, A., Kobayashi, T., del Saz, E. G., & Seguchi, H. (2010). Antioxidant effects of protocatechuic acid, ferulic acid and caffeic acid in human neutrophils using a fluorescent substance. International Journal of Morphology, 28, 911–920. DOI: 10.4067/s0717-95022010000300040.

    Article  Google Scholar 

  • Khare, D., Verma, B., & Pande, R. (2012). Antioxidant activity of N -phenylbenzohydroxamic acid. Asian Journal of Pharmaceutical and Clinical Research, 5, 121–124.

    CAS  Google Scholar 

  • Končić, M., Rajić, Z., Petrić, N., & Zorc, B. (2009). Antioxidant activity of NSAID hydroxamic acids. Acta Pharmaceutica, 59, 235–242. DOI: 10.2478/v10007-009-0017-8.

    Google Scholar 

  • Nakamura, K., Fushimi, K., Kouchi, H., Mihara, K., Miyazaki, M., Ohe, T., & Namba, M. (1998). Inhibitory effects of antioxidants on neonatal rat cardiac myocyte hypertrophy induced by tumor necrosis factor-α and angiotensin II. Circulation, 98, 794–799. DOI: 10.1161/01.cir.98.8.794.

    Article  CAS  Google Scholar 

  • Nie, S., & Zare, R. N. (1997). Optical detection of single molecules. Annuual Review on Biophysics and Biomolecular Structure, 26, 567–596. DOI: 10.1146/annurev.biophys.26.1.567.

    Article  CAS  Google Scholar 

  • Oana, H., Tsumoto, K., Yoshikawa, Y., & Yoshikawa, K. (2002). Folding transition of large DNA completely inhibits the action of a restriction endonuclease as revealed by single-chain observation. FEBS Letters, 530, 143–146. DOI: 10.1016/s0014-5793(02)03448-8.

    Article  CAS  Google Scholar 

  • Patre, S., Thakur, P., & Pande, R. (2011). Solubility and hydrophobic descriptors of N-arylhydroxamic acids. International Journal of Bioscience, Biochemistry and Bioinformatics, 1, 267–270. DOI: 10.7763/ijbbb.2011.v1.50.

    Article  Google Scholar 

  • Rajwade, R. P., Pande, R., Mishra, K. P., Kumar, A., & Pandey, B. N. (2008). Quantitative structure — activity relationship (QSAR) of N-arylsubstituted hydroxamic acids as inhibitors of human adenocarcinoma cells A431. Medicinal Chemistry, 4, 237–243. DOI: 10.2174/157340608784325106.

    Article  CAS  Google Scholar 

  • Rajwade, R. P., Pande, R., Mishra, K. P., Kumar, A., & Pandey, B. N. (2009). Hydroxamic acids analogous against breast cancer cells: 2D-QSAR and 3D-QSAR stud ies. QSAR & Combinatorial Sciences, 28, 1500–1508. DOI: 10.1002/qsar.200910023.

    Article  CAS  Google Scholar 

  • Ramadas, D., & Leela, S. (2011). Antioxidant effects of 28 kDa antioxidant protein from turmeric (Curcuma longa L). Asian Journal of Pharmaceutical and Clinical Research, 4, 112–118.

    Google Scholar 

  • Rigler, R., Mets, Ü., Widengren, J., & Kask, P. (1993). Fluorescence correlation spectroscopy with high count rate and low background: Analysis of translational diffusion. European Biophysics Journal, 22, 169–175. DOI: 10.1007/bf00185777.

    Article  CAS  Google Scholar 

  • Sautin, Y. Y., Nakagawa, T., Zharikov, S., & Johnson, R. J. (2007). Adverse effects of the classic antioxidant uric acid in adipocytes: NADPH oxidase-mediated oxidative/nitrosative stress. AJP: Cell Physiology, 293, C584–C596. DOI: 10.1152/ajpcell.00600.2006.

    CAS  Google Scholar 

  • Sato, Y. T., Hamada, T., Kubo, K., Yamada, A., Kishida, T., Mazda, O., & Yoshikawa, K. (2005). Folding transition into a loosely collapsed state in plasmid DNA as revealed by single-molecule observation. FEBS Letters, 579, 3095–3099. DOI: 10.1016/j.febslet.2005.04.072.

    Article  CAS  Google Scholar 

  • Sharma, U. S., & Kumar, A. (2011). In vitro antioxidant activity of Rubus ellipticus fruits. Journal of Advanced Pharmaceutical Technology & Research, 2, 47–50. DOI: 10.4103/2231-4040.79805.

    Article  Google Scholar 

  • Shirinzadeh, H., Eren, B., Gurer-Orhan, H., Suzen, S., & Özden, S. (2010). Novel indole-based analogs of melatonin: Synthesis and in vitro antioxidant activity studies. Molecules, 15, 2187–2202. DOI: 10.3390/molecules15042187.

    Article  CAS  Google Scholar 

  • Tiwari, V., & Pande, R. (2006). Molecular descriptors of Narylhydroxamic acids: A tool in drug design. Chemical Biology & Drug Design, 68, 225–228. DOI: 10.1111/j.1747-0285.2006.00433.x.

    Article  CAS  Google Scholar 

  • Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M., & Mazur, M. (2006). Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions, 160, 1–40. DOI: 10.1016/j.cbi.2005.12.009.

    Article  CAS  Google Scholar 

  • Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology, 39, 44–84. DOI: 10.1016/j.biocel.2006.07.001.

    Article  CAS  Google Scholar 

  • Wu, Y., Sun, F. F., Tong, D. M., & Taylor, B. M. (1996). Changes in membrane properties during energy depletioninduced cell injury studied with fluorescence microscopy. Biophysical Journal, 71, 91–100. DOI: 10.1016/s0006-3495(96)79243-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rama Pande.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Khare, D. & Pande, R. Evaluation of antioxidant activity and DNA cleavage protection effect of naphthyl hydroxamic acid derivatives through conventional and fluorescence microscopic methods. Chem. Pap. 68, 1298–1304 (2014). https://doi.org/10.2478/s11696-014-0576-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-014-0576-0

Keywords

Navigation