Skip to main content
Log in

Exploring antioxidant reactivity and molecular structure of phenols by means of two coupled assays using fluorescence probe (2,3-diazabicyclo[2.2.2]oct-2-ene, DBO) and free radical (2,2-diphenyl-1-picrylhydrazyl, \(\hbox {DPPH}^{\cdot }\))

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Phenolic compounds can be considered as the most important bioactive compounds in Mediterranean diet. However, many of the complex connections between phenols antioxidant reactivity and their molecular structure remain unsolved. To shine light on these issues, the antioxidant reactivity of 15 relevant phenolic compounds was studied. Two different analytical approaches were combined: (a) the well-established 2,2-diphenyl-1-picrylhydrazyl \((\hbox {DPPH}^{\cdot }\)) stable free radical assay, and (b) the 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) fluorescent probe assay. The results obtained confirm how certain structural features (i.e., hydroxyl and methoxy groups, alkyl and alkenyl chains) play a critical role in the singular antioxidant response exhibited by each phenolic compound. This knowledge provides decisive information to select a specific phenolic compound as an antioxidant additive or for the chemical design of new antioxidants.

Graphical Abstract:

Synopsis (for Contents page): Interactions between DBO (fluorescence quenching) and DPPH (radical scavenging) with fifteen phenolic compounds, which are present in olive oil and wine, served as a measure of antioxidant activity of the phenols and correlated to the molecular structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Orzechowski A, Ostaszewski P, Jank M and Berwird S J 2002 Bioactive substances of plant origin in food-impact on genomics Reprod. Nutr. Dev. 42 461

    Article  CAS  Google Scholar 

  2. Saura-Calixto F and Goñi I 2006 Antioxidant capacity of the Spanish Mediterranean diet Food Chem. 94 442

    CAS  Google Scholar 

  3. Bendini A, Cerretani L, Carrasco-Pancorbo A, Gómez-Caravaca A M, Segura-Carretero A, Fernández-Gutiérrez A and Lercker G 2007 Phenolic molecules in virgin olive oils: a survey of theirsensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade Molecules 12 1679

    CAS  Google Scholar 

  4. Beer de D, Joubert E, Gelderblom W C A and Manley M 2002 Phenolic compounds: a review of their possible role as in vivo antioxidants of wine S. Afr. J. Enol. Vitic. 23 48

    Google Scholar 

  5. Perona J S, Cabello-Moruno R and Ruíz-Gutierrez V 2006 The role of virgin olive oil components in the modulation of endothelial function J. Nutr. Biochem. 17 429

    Article  CAS  Google Scholar 

  6. Belay A and Gholap A V 2009 Characterization and determination of chlorogenic acids (CGA) in coffee beans by UV-Vis spectroscopy AJPAC 11 234

  7. Trichopoulou A and Lagiou P 1997 Healthy traditional Mediterranean diet: an expression of culture, history, and lifestyle Nutr. Rev. 55 383

    CAS  Google Scholar 

  8. Camuesco D, Comalada M, Rodriguez-Cabezas M E, Nieto A, Lorente M D, Concha A, Zarzuelo A and Galvez J 2004 The intestinal anti-inflammatory effect of quercitrin is associated with an inhibition in iNOS expression Br. J. Pharmacol. 143 908

    CAS  Google Scholar 

  9. Yu T, Lee Y J, Jang H J, Kim A R, Hong S, Kim T W, Kim M Y, Lee J, Lee Y G and Cho J Y 2011 Anti-inflammatory activity of Sorbuscommixta water extract and its molecular inhibitory mechanism J. Ethnopharmacol. 134 493

    Article  Google Scholar 

  10. Lucarini M and Pedulli G F 1994 Bond dissociation enthalpy of \(\alpha \)-tocopherol and other phenolic antioxidants J. Org. Chem. 59 5063

    Article  CAS  Google Scholar 

  11. Nenadis N, Boyle S, Bakalbassis E G and Tsimidou M 2003 An experimental approach to structure–activity relationships of caffeic and dihydrocaffeic acids and related monophenols JAOCS  80 451

    CAS  Google Scholar 

  12. Chandraker K, Vaishanav S K, Nagwanshi R and Satnami M L 2015 Radical Scavenging Efficacy of Thiol Capped Silver Nanoparticles J. Chem. Sci. 127 2183

    Article  CAS  Google Scholar 

  13. Koprivnjak O, Škevin D, Valić S, Majetić V, Petričević S and Ljubenkov I 2008 The antioxidant capacity and oxidative stability of virgin olive oil enriched with phospholipids Food Chem. 111 121

    CAS  Google Scholar 

  14. Yapati H, Devineni S R, Chirumamilla S and Kalluru S 2016 Synthesis, characterization and studies on antioxidant and molecular docking of metal complexes of 1-(benzo[d]thiazol-2-yl)thiourea J. Chem. Sci. 128 43

  15. Poerio A, Bendini A, Cerretani L, Bonoli-Carbognin M and Lercker G 2008 Effect of olive fruit freezing on oxidative stability of virgin olive oil Eur. J. Lipid Sci. Technol. 110 368

    Article  CAS  Google Scholar 

  16. Bendini A, Cerretani L, Vecchi S, Carrasco-Pancorbo A and Lercker G 2006Protective Effects of Extra Virgin Olive Oil Phenolics on Oxidative Stability in the Presence or Absence of Copper Ions J. Agric. Food Chem. 54 4880

  17. Ou B, Huang D, Hampsch-Woodill M, Flanagan J A and Deemer E K 2002 Analysis of Antioxidant Activities of Common Vegetables Employing Oxygen Radical Absorbance Capacity (ORAC) and Ferric Reducing Antioxidant Power (FRAP) Assays: A Comparative Study J. Agric. Food Chem. 50 3122

    Article  CAS  Google Scholar 

  18. Einbond L S, Reynertsona K A, Xiao-Dong L, Basileb M J and Kennelly E J 2004 Anthocyanin antioxidants from edible fruits Food Chem. 84 23

    CAS  Google Scholar 

  19. Pischel U, Patra D, Koner A L and Nau W M 2006 Investigation of polar and stereoelectronic effects on pure excited-state hydrogen atom abstractions from phenols and alkylbenzenes J. Photochem. Photobiol. 82 310

    Article  CAS  Google Scholar 

  20. Anbazhagan V, Kandavelu V, Kathiravan A and Renganathan R 2008 Investigation on the fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) by certain estrogens and catechols J. Photochem. Photobiol. A: Chem. 193 204

  21. Anbazhagan V, Kalaiselvan A, Jaccob M, Venuvanalingam P and Renganathan R 2008 Investigations on the fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene by certain flavonoids J. Photochem. Photobiol. B: Biol. 91 143

    Article  CAS  Google Scholar 

  22. Anbazhagan V and Renganathan R 2009 Investigation of the fluorescence quenching of 2,3-diazabicyclo[2.2.2]oct-2-ene(DBO) by certain substituted uracils J. Lumin. 129 382

    Article  CAS  Google Scholar 

  23. Nau W M 1998 A fluorescent probe for antioxidants JACS 120 12614

    CAS  Google Scholar 

  24. Žilić D, Pajić D, Jurić M,Molčanov K, Rakvin B, Planinić P and Zadro K 2010 Single crystals of DPPH grown from diethyl ether and carbon disulfide solutions - crystal structures, IR, EPR and magnetization studies J. Magn. Res. 207 34

    Article  Google Scholar 

  25. Zhang Z L, Chen J, Xu Q, Rao C and Qiao C 2011 Efficient Synthesis of Hydroxytyrosol from 3,4-Dihydroxybenzaldehyde Synth. Commun. 42 794

    Google Scholar 

  26. Askani R 1965 Zur Reaction von Cyclohexadien-(1.3) mitAzodicarbonsäure-diäthylester Chem. Beri. 98  2551

  27. Jolliffe T 2002 In Principal Component Analysis (New York: Springer Verlag)

    Google Scholar 

  28. Brand-Williams W, Cuvelier M E and Berset C1995 Use of a free radical method to evaluate antioxidant activity LWT-Food Sci.Tecnol. 28 25

  29. Miliauskas G, Venskutonis P R and Van Beek T A 2004 Screening of radical scavenging activity of some medicinal and aromatic plant extracts Food Chem. 85 231

    CAS  Google Scholar 

  30. Dudonné S, Vitrac X, Coutière P, Woillez M and Mérillon J M 2009 Comparative Study of Antioxidant Properties and Total Phenolic Content of 30 Plant Extracts of Industrial Interest Using DPPH, ABTS, FRAP, SOD, and ORAC Assays J. Agric. Food Chem. 57 1768

    Article  Google Scholar 

  31. Pizarro M L, Becerra M, Sayago A, Beltrán M and Beltrán R 2013 Comparison of Different Extraction Methods to Determine Phenolic Compounds in Virgin Olive Oil Food Anal. Method 6 123

    Google Scholar 

  32. Becerra-Herrera M, Sánchez-Astudillo M, Beltrán R and Sayago A 2014 Determination of phenolic compounds in olive oil: New method based on liquid liquid micro extraction and ultra-high performance liquid chromatography-triple-quadrupole mass spectrometry LWT-Food Sci. Tecnol. 57 49

    CAS  Google Scholar 

  33. López-Giraldo L J, Laguerre M, Lecomte J, Figueroa-Espinoza M C, Baréa B, Weiss J, Decker E A and Villeneuve P 2009 Kinetic and Stoichiometry of the Reaction of Chlorogenic Acid and Its Alkyl Esters against the DPPH Radical J. Agric. Food Chem. 57 863

    Article  Google Scholar 

  34. Nau W M, Greiner G, Rau H, Wall J, Olivucci M and Scaiano J C 1999 Fluorescence of 2,3-diazabicyclo[2.2.2]oct-2-ene revisited: Solvent-induced quenching of the n, \(\uppi \)*-excited state by an aborted hydrogen atom transfer J. Phys. Chem. A 103 1579

    Article  CAS  Google Scholar 

  35. Foti M C, Daquino C, DiLabio G A and Ingold K U 2011 Kinetics of the oxidation of quercetin by 2,2-diphenyl-1-picrylhydrazyl (dpph\(\bullet \)) Org. Lett. 13 4826

    CAS  Google Scholar 

  36. Ajitha M J, Mohanlal S, Suresh C H and Jayalekshmy A 2012 DPPH Radical Scavenging Activity of Tricin and Its Conjugates Isolated from “Njavara” Rice Bran: A Density Functional Theory Study J. Agric. Food Chem. 60 3693

    Article  CAS  Google Scholar 

  37. Rice-Evans A C, Miller N J and Paganga G 1996 Structure-antioxidant activity relationship of flavonoids and phenolic acids Free Radical Biol. Med. 20 933

    CAS  Google Scholar 

  38. Campos A M, Duran N, Lopez-Alarcón C and Lissi E 2012 Kinetic and stoichiometric evaluation of free radicals scavengers activities based on diphenyl-picrylhydrazyyl (DPPH) consumption J. Chil. Chem. Soc. 57 1381

    Article  CAS  Google Scholar 

  39. Torres de Pinedo A, Peñalver P and Morales J C 2007 Synthesis and evaluation of new phenolic-based antioxidants: Structure–activity relationship Food Chem. 103 55

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. W. M. Naufrom Jaccobs University of Bremen (Germany) for kindly providing the DBO fluorophore used in this study, and to Prof. J. L. Espartero from University of Seville (Spain) for kindly providing the hydroxytyrosol. We are also indebted to Prof. M. A. Caraballo and Prof. P. Richter from University of Chile (Chile) and Prof. U. Pischel from University of Huelva (Spain) for helpful comments and discussions. This study was funded by the Environmental Council of the Andalusia Regional Government through project P10 FQM 6185 and by the Operative Program of Transborderline Cooperation Spain-Portugal through project 0434_I2TEP_5_E OLITRACE and by FONDECYT (Postdoctoral Grant 3150059).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MERCEDES BECERRA-HERRERA.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 631 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BECERRA-HERRERA, M., SAYAGO, A. & BELTRÁN, R. Exploring antioxidant reactivity and molecular structure of phenols by means of two coupled assays using fluorescence probe (2,3-diazabicyclo[2.2.2]oct-2-ene, DBO) and free radical (2,2-diphenyl-1-picrylhydrazyl, \(\hbox {DPPH}^{\cdot }\)). J Chem Sci 129, 1381–1390 (2017). https://doi.org/10.1007/s12039-017-1331-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12039-017-1331-1

Keywords

Navigation