Skip to main content
Log in

Assessment of potential prooxidant and antioxidant actions

  • Review
  • Published:
Journal of the American Oil Chemists’ Society

Abstract

Suggestions that oxidative stress plays a role in human diseases have led to the proposal that health might be improved by increased dietary intake of antioxidants. Plant-derived antioxidants, such as flavonoids or rosemary extracts, are increasingly proposed as important dietary antioxidant factors, and foods rich in antioxidants are also receiving attention. Before widescale usage of natural and synthetic antioxidants can be suggested, it is necessary to establish the properties of such molecules. Assays for characterizing the potential prooxidant/antioxidant actions of food additives, antioxidant supplements, antioxidant drug molecules, and nutrient components have been developed for this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aruoma, O.I., Characterization of Drugs as Antioxidant Prophylactics,Free Radical Biol. Med. 20:675–705 (1996).

    Article  CAS  Google Scholar 

  2. Sies, H., (ed.),Oxidative Stress, Academic Press, London, 1985.

    Google Scholar 

  3. Löliger, J., The Use of Antioxidants in Food, inFree Radicals and Food Additives, edited by O. I. Aruoma and B. Halliwell, Taylor & Francis, London, 1991, pp. 121–150.

    Google Scholar 

  4. Hudson, B.J.F. (ed.),Food Antioxidants, Elsevier Applied Science, London, 1990.

    Google Scholar 

  5. Namiki, M., Antioxidants/Antimutagens in Foods,Crit. Rev. Food Sci. Nutri. 29:273–300 (1990).

    CAS  Google Scholar 

  6. Porter, N.A., Mechanism for the Autoxidation of Polyunsaturated Lipids,Acc. Chem. Res. 19:262–268 (1986).

    Article  CAS  Google Scholar 

  7. Frankel, E.N., Lipid Oxidation,Prog. Lipid Res. 19:1–22 (1980).

    Article  CAS  Google Scholar 

  8. St. Angelo, A.J., (ed.),Lipid Oxidation in Food, American Chemical Society, Series 500, Washington, 1992.

    Google Scholar 

  9. Porter, W.L., Paradoxical Behaviour of Antioxidants in Food and Biological Systems,Toxicol. Indus. Health 9:93–122 (1993).

    CAS  Google Scholar 

  10. Porter, N.A., S.E. Caldwell, and K.A. Mills, Mechanism of Free Radical Oxidation of Unsaturated Lipids,Lipids 30:277–290 (1995).

    CAS  Google Scholar 

  11. Aruoma, O.I., Free Radicals and Food,Chem. Br. 29:210–214 (1993).

    CAS  Google Scholar 

  12. Kubow, S., Routes of Formation and Toxic Consequences of Lipid Oxidation Products in Foods,Free Radical Biol. Med. 12:63–81 (1992).

    Article  CAS  Google Scholar 

  13. Addis, P.B., and G.J. Warner, The Potential Health Aspects of Lipid Oxidation Products in Food, inFree Radicals and Food Additives, edited by O.I. Aruoma and B. Halliwell, Taylor & Francis, London, 1991, pp. 77–119.

    Google Scholar 

  14. Paniangvait, P., A.J. King, and B.G. Jones, Cholesterol Oxides in Foods of Animal Origin.J. Food, Sci. 60:1159–1174 (1996).

    Article  Google Scholar 

  15. Addis, P.B., Occurrence of Lipid Oxidation Products in Foods,Food Chem. Toxicol. 24:1021–1030 (1986).

    Article  CAS  Google Scholar 

  16. Addis, P.B., T.P. Carr, C.A. Hassel, Z.Z. Huang, and G.J. Warner, Atherogenic and Anti-atherogenic Factors in the Human Diet,Biochem. Soc. Symp. 61:259–271 (1996).

    Google Scholar 

  17. Smith, L.L., Cholesterol Autoxidation,Chem. Phys. Lipids 44:87–125 (1987).

    Article  CAS  Google Scholar 

  18. Pratt, D.E., Antioxidants Indigenous to Foods,Toxicol. Ind. Health 9:63–75 (1993).

    CAS  Google Scholar 

  19. Shahidi, F., and J.P.K.P.D. Wanasundara, Phenolic Antioxidants,Crit. Rev Food Sci. Nutr. 32:67–103 (1992).

    CAS  Google Scholar 

  20. Papas, A.M., Oil-Soluble Antioxidants in Foods,Toxicol. Ind. Health 9:123–149 (1993).

    CAS  Google Scholar 

  21. Stich, H.F., The Beneficial and Hazardous Effects of Simple Phenolic Compounds,Mutat. Res. 259:307–324 (1991).

    Article  CAS  Google Scholar 

  22. Sgaraghi, G., L. Della Corte, R. Pulitti, F. De Sarlo, R. Francalanci, and A. Guarna, Oxidation of 2-t-Butyl-4 Methoxyphenol (BHA) by Horseradish and Mammalian Peroxidase Systems,Biochem. Pharmacol. 29:763–769 (1980).

    Article  Google Scholar 

  23. Kahl, R., Protective and Adverse Biological Actions of Phenolic Antioxidants, inOxidative Stress: Oxidants and Antioxidants, edited by H. Sies, Academic Press, London, 1991, pp. 245–273.

    Google Scholar 

  24. Thompson, D.C., and M.A. Trush, Studies on the Mechanism of Enhancement of Butylated Hydroxytoluene-Induced Mouse Lung Toxicity by Butylated Hydroxyanisole,Toxicol. Appl. Pharmacol. 96:122–131 (1988).

    Article  CAS  Google Scholar 

  25. Ito, N., S. Fukushina, and H. Tsuda, Carcinogenicity and Modification of the Carcinogenic Response by BHA, BHT and Other Antioxidants,CRC Crit. Rev. Toxicol. 15:109–115 (1985).

    Google Scholar 

  26. Wagner, P., and R.A. Lewis, Interaction Between Activated Nordihydroguaiaretic Acid and Deoxyribonucleic Acid,Biochem. Pharmacol. 29:3229–3306 (1980).

    Article  Google Scholar 

  27. World Health Organisation International Agency for Research on Cancer (IARC),Evaluation of the Carcinogenic Risk of Chemicals to Humans, 40:123–159 (1986).

    Google Scholar 

  28. Life Sciences Research Office (LSRO), Evaluation of Evidence for the Carcinogenicity of Butylated Hydroxyanisole (BHA),FASEB, Bethesda, 1994.

  29. Mehta, A.C., and T.R. Seshadri, Flavonoids as Antioxidants,J. Sci. Ind. Res. India 18B:24–28 (1959).

    CAS  Google Scholar 

  30. Hertog, M.G.L., E.J.M. Feskens, P.C.H. Hollman, M.B. Katan, and D. Kromhout, Dietary Antioxidant Flavonoids and Risk of Coronary Heart Disease,Lancet 342:1007–1011 (1993).

    Article  CAS  Google Scholar 

  31. Herrmann, K., Flavonols and Flavones in Food Plants: A Review,J. Food Technol. 11:433–448 (1976).

    CAS  Google Scholar 

  32. Kuhnau, S., The Flavonoids: A Class of Semi-Essential Food Components: Their Role in Human Nutrition,World Rev. Nutr. Diet 24:117–191 (1976).

    CAS  Google Scholar 

  33. Ramanathan, L., and N.P. Das, Studies on the Control of Lipid Oxidation in Ground Fish by Some Polyphenolic Natural Products,J. Agric. Food. Chem. 40:17–21 (1992).

    Article  CAS  Google Scholar 

  34. Khayat, A., and D. Schwall, Lipid Oxidation in Seafood,Food Technol. (Chicago) 37:130–140 (1983).

    CAS  Google Scholar 

  35. Anton, R., Flavonoids and Traditional Medicine, inPlant Flavonoids in Biology and Medicine II: Biochemical and Medicinal Properties, edited by V. Cody, E. Middleton, J.B. Harborne, and A. Bevertz, Alan R. Liss, New York, 1988, pp. 423–438.

    Google Scholar 

  36. Wollenweber, E., Occurrence of Flavonoid Aglycones in Medicinal Plants, in, edited by V. Cody, E. Middleton, J.B. Harborne, and A. Bevertz, Alan R. Liss, New York, 1988, pp. 45–55.

    Google Scholar 

  37. Laughton, M.J., B. Halliwell, P.J. Evans, and J.R.S. Hoult, Antioxidant and Prooxidant Actions of the Plant Phenolics Quercetin, Gossypol and Myricetin,Biochem. Pharmacol. 38: 2859–2865 (1989).

    Article  CAS  Google Scholar 

  38. Aruoma, O.I., P.J. Evans, H. Kaur, L. Sutcliffe, and B. Halliwell, An Evaluation of the Antioxidant and Potential Prooxidant Properties of Food Additives and Trolox C, Vitamin E and Probucol,Free Radical Res. Commun. 10:143–157 (1990).

    CAS  Google Scholar 

  39. Aruoma, O.I., B. Halliwell, R. Aeschbach, and J. Löliger, Antioxidant and Prooxidant Properties of Active Rosemary Constituents: Carnosol and Carnosic Acid,Xenobiotica 22:257–268 (1992).

    Article  CAS  Google Scholar 

  40. Halliwell, B., How to Characterize a Biological Antioxidant,Free Radical Res. Commun. 9:1–32 (1990).

    CAS  Google Scholar 

  41. Aruoma, O.I., Prooxidant Properties: An Important Consideration for Food Additives and/or Nutrient Components, inFree Radicals and Food Additives, edited by O.I. Aruoma and B. Halliwell, Taylor & Francis, London, 1991, pp. 173–194.

    Google Scholar 

  42. Aruoma, O.I., Nutrition and Health Aspects of Free Radicals and Antioxidants,Food Chem. Toxicol 32:671–683 (1994).

    Article  CAS  Google Scholar 

  43. Halliwell, B., R. Aeschbach, J. Löliger, and O.I. Aruoma, The Characterization of Antioxidants,33:601–617 (1995).

    Article  CAS  Google Scholar 

  44. Halliwell, B., J.M.C. Gutteridge, and O.I. Aruoma, The Deoxyribose Method: A Simple “Test Tube” Assay for Determination of Rate Constants for Reaction of Hydroxyl Radicals,Anal. Biochem. 165:215–219 (1987).

    Article  CAS  Google Scholar 

  45. Aruoma, O.I., Deoxyribose Assay for Detecting Hydroxyl Radicals,Methods Enzymol. 233:57–66 (1994).

    CAS  Google Scholar 

  46. Aruoma, O.I., M. Grootveld, and B. Halliwell, The Role of Iron in Ascorbate-Dependent Deoxyribose Degradation. Evidence Consistent with a Site-Specific Hydroxyl Radical Generation Caused by Iron Ions Bound to the Deoxyribose Molecule,J. Inorg. Biochem. 29:289–299 (1987).

    Article  CAS  Google Scholar 

  47. Gutteridge, J.M.C., Reactivity of Hydroxyl and Hydroxyl-Like Radical Discriminated by Release of Thiobarbituric Acid-Reactive Material from Deoxyribose, Nucleosides and Benzoate,Biochem. J. 224:761–767 (1984).

    CAS  Google Scholar 

  48. Aruoma, O.I., and B. Halliwell, The Iron Binding and Hydroxyl Radical Scavenging Action of Anti-Inflammatory Drugs,Xenobiotica 18:459–470 (1988).

    Article  CAS  Google Scholar 

  49. Breimer, L.H., Molecular Mechanisms of Oxygen Radical Carcinogenesis and Mutagenesis. The Role of DNA Base Damage,Mol. Carcinog. 3:188–197 (1990).

    CAS  Google Scholar 

  50. Stoewe, R., and W.A. Prütz, Copper-Catalyzed DNA Damage by Ascorbate and Hydrogen Peroxide: Kinetics and Yield,Free Radical Biol. Med. 3:97–105 (1987).

    CAS  Google Scholar 

  51. Halliwell, B., and O.I. Aruoma, DNA Damage by Oxygen-Derived Species. Its Mechanism and Measurement in Mammalian Systems,FEBS Lett. 281:9–19 (1991).

    Article  CAS  Google Scholar 

  52. Frenkel, K., Carcinogen-Mediated Oxidant Formation and Oxidative DNA Damage,Pharmacol. Thera 53:127–166 (1992).

    Article  CAS  Google Scholar 

  53. Aruoma, O.I., and B. Halliwell, DNA Damage by Free Radicals: Carcinogenic Implications, inImmunopharmacology of Free Radical Species, edited by D.R. Blake and P.G. Winyard, Academic Press, London, 1995, pp. 199–214.

    Google Scholar 

  54. Breen, A.P., and J.A. Murphy, Reactions of Oxyl Radicals with DNA,Free Radical Biol. Med. 18:1033–1077 (1995).

    Article  CAS  Google Scholar 

  55. Marnett, L.J., and P.C. Burcham, Endogenous DNA Adducts: Potential and Paradox,Chem. Res. Toxicol. 6:771–785 (1993).

    Article  CAS  Google Scholar 

  56. Von Sonntag, C.,The Chemical Basis of Radiation Biology, Taylor & Francis, London, 1987.

    Google Scholar 

  57. Byrnes, R.W., Evidence for Involvement of Multiple Iron Species in DNA Single-Strand Scission by H2O2 in HL-60 Cells,Free Radical Biol. Med. 20:399–406 (1996).

    Article  CAS  Google Scholar 

  58. Reid, T.M., and L.A. Loeb, Effect of DNA Repair Enzymes on Mutagenesis by Oxygen Free Radicals,Mutat. Res. 289:181–186 (1993).

    CAS  Google Scholar 

  59. Bryan, S.E., D.L. Vizard, D.A. Beary, R.A. LaBiche, and K.J. Hardy, Partitioning of Zinc and Copper Within Subnuclear Nucleoprotein Particles,Nucleic Acids Res. 9:5811–5823 (1981).

    CAS  Google Scholar 

  60. Pezzano, H., and F. Podo, Structure of Binary Complexes of Mono- and Polynucleotides with Metal Ions of the First Transition Group,Chem. Rev. 80:365–401 (1980).

    Article  CAS  Google Scholar 

  61. Dizdaroglu, M., Chemical Determination of Free Radical Induced Damage to DNA,Free Radical Biol. Med. 10:225–242 (1991).

    Article  CAS  Google Scholar 

  62. Halliwell, B., and O.I. Aruoma, (eds.),DNA and Free Radicals, Ellis Horwood, London, 1993.

    Google Scholar 

  63. Burrï, J., M. Graf, P. Lambelet, and J. Löliger, Vanillin: More Than a Flavouring Agent—A Potent Antioxidant,J. Sci. Food Agric. 48:49–56 (1989).

    Article  Google Scholar 

  64. Liu, J., and A. Mori, Antioxidant and Prooxidant Activities ofp-Hydroxybenzyl Alcohol and Vanillin: Effects on Free Radicals, Brain Peroxidation and Degradation of Benzoate Deoxyribose, Amino Acids and DNA,Neuropharmacology 32:59–669 (1993).

    Article  Google Scholar 

  65. Aruoma, O.I., B. Halliwell, and M. Dizdaroglu, Iron-Ion Dependent Modification of Bases in DNA by the Superoxide Radical Generating System Hypoxanthine/Xanthine Oxidase,J. Biol. Chem. 264:20509–20512 (1989).

    CAS  Google Scholar 

  66. Gutteridge, J.M.C., D.A. Rowley, and B. Halliwell, Superoxide-Dependent Formation of Hydroxyl Radicals in the Presence of Iron Salts. Detection of Free Iron in Biological Systems Using the Bleomycin-Dependent Degradation of DNA,Biochem. J. 199:263–265 (1981).

    CAS  Google Scholar 

  67. Sigiura, Y., T. Suzuki, J. Kuwahara, and H. Tanaka, On the Mechanism of Hydrogen Peroxide-, Superoxide-, and Ultraviolet Light-Induced DNA Cleavages of Inactive Bleomycin Iron-(III) Complex,Biochem. Biophys. Res. Commun. 105:1511–1518 (1982).

    Article  Google Scholar 

  68. Petering, D.H., R.W. Byrnes, and W.E. Antholine, The Role of Redox-Active Metals in the Mechanism of Action of Bleomycin,Chem. Biol. Interact. 73:133–182 (1990).

    Article  CAS  Google Scholar 

  69. Gajewski, E., O.I. Aruoma, M. Dizdaroglu, and B. Halliwell, Bleomycin-Dependent Damage to Bases in DNA Is a Minor Side Reaction,Biochemistry 30:2444–2448 (1991).

    Article  CAS  Google Scholar 

  70. Aruoma, O.I., Use of DNA Damage as a Measure of Prooxidant Actions of Antioxidant Food Additives and Nutrient Components, inDNA and Free Radicals, edited by B. Halliwell and O.I. Aruoma, Ellis Horwood, London, 1993, pp. 315–327.

    Google Scholar 

  71. Burger, R.M., J. Peisach, and S.B. Horwitz, Mechanism of Bleomycin Action:in vitro Studies,Life Sci. 28:715–727 (1981).

    Article  CAS  Google Scholar 

  72. Giloni, L., M. Takeshita, F. Johnson, C. Iden, and A.P. Grollman, Bleomycin-Induced Strand Scission of DNA: Mechanism of Deoxyribose Cleavage,J. Biol. Chem. 256:8608–8615 (1981).

    CAS  Google Scholar 

  73. Sigman, D.S., Nuclease Activity of 1,10-Phenanthroline-Copper Ion,Acc. Chem. Res. 19:180–186 (1986).

    Article  CAS  Google Scholar 

  74. Thederahn, T.B., D.M. Kuwabra, T.A. Larson, and D.S. Sigman, Nuclease Activity of 1,10-Phenanthroline-Copper: Kinetic Mechanism,J. Am. Chem. Soc. 111:4941–4946 (1989).

    Article  CAS  Google Scholar 

  75. Gutteridge, J.M.C., and B. Halliwell, The Role of Superoxide and Hydroxyl Radicals in the Degradation of DNA and Deoxyribose Induced by a Copper-Phenanthroline Complex,Biochem. Pharmacol. 31:2801–2805 (1982).

    Article  CAS  Google Scholar 

  76. Que, B.G., K.M. Downey, and A.G. So, Degradation of Deoxyribonucleic Acid by a 1,10-Phenanthroline-Copper Complex: The Role of Hydroxyl Radicals,Biochemistry 19: 5987–5991 (1980).

    Article  CAS  Google Scholar 

  77. Dizdaroglu, M., O.I. Aruoma, and B. Halliwell, Modification of Bases in DNA by Copper-Ion-1, 10-Phenanthroline Complexes,29:8447–8451 (1990).

    Article  CAS  Google Scholar 

  78. Reich, K.A., L.E. Marshall, D.R. Graham, and D.S. Sigman, Cleavage of DNA by the Phenanthroline-Copper Ion Complex. Superoxide Mediates the Reaction Dependent on NADH and Hydrogen Peroxide,J. Am. Chem. Soc. 103:3582–3584 (1981).

    Article  CAS  Google Scholar 

  79. Smith, C., B. Halliwell, and O.I. Aruoma, Protection by Albumin Against the Prooxidant Actions of Phenolic Dietary Components,Food Chem. Toxicol. 30:483–489 (1992).

    Article  CAS  Google Scholar 

  80. Frankel, E.N., A.L. Waterhouse, and P. Teissedre, Principal Phenolic Phytochemicals in Selected California Wines and Their Antioxidant Activity in Inhibiting Oxidation of Human Low Density Lipoproteins,J. Agric. Food Chem. 43:890–894 (1995).

    Article  CAS  Google Scholar 

  81. Frankel, E.N., J. Kanner, J.B. German, E. Parks, and J.E. Kinsella, Inhibition of Human Low Density Lipoprotein Oxidation by Phenolic Substances in Red Wine,Lancet 341:454–457 (1993).

    Article  CAS  Google Scholar 

  82. Kanner, J., E. Frankel, R. Granit, B. Gorman, and J.E. Kinsella, Natural Antioxidants in Grapes and Wines,J. Agric. Food Chem. 42:64–69 (1994).

    Article  CAS  Google Scholar 

  83. Smith, C., M.J. Mitchinson, O.I. Aruoma, and B. Halliwell, Stimulation of Lipid Peroxidation and Hydroxyl Radical Generation by the Contents of Human Atherosclerotic Lesions,Biochem. J. 286:901–905 (1992).

    CAS  Google Scholar 

  84. Swain, J., and J.M.C. Gutteridge, Prooxidant Iron and Copper, with Ferroxidase and Xanthine Oxidase Activities in Human Atherosclerotic Material,FEBS Lett. 368:513–515 (1995).

    Article  CAS  Google Scholar 

  85. Ehrenwald, E., G.M. Chisolm, and P.L. Fox, Intact Human Ceruloplasmin Oxidatively Modifies Low Density Lipoprotein,J. Clin. Invest. 93:1493–1501 (1994).

    Article  CAS  Google Scholar 

  86. Salonen, J.T., R. Salonen, K. Seppänen, M. Kantola, S. Suntionen, and H. Kerpela, Interactions of Serum Copper, Selenium and Low Density Lipoprotein Cholesterol in Atherogenesis,Br. Med. J. 302:756–760 (1991).

    Article  CAS  Google Scholar 

  87. Lamb, D.J., M.J. Mitchinson, and D.S. Leake, Transition Metal Ions Within Human Atherosclerotic Lesions Can Catalyse the Oxidation of Low Density Lipoprotein by Macrophages,FEBS Lett. 374:12–16 (1995).

    Article  CAS  Google Scholar 

  88. Ushakova, T., H. Melkonyan, L. Nikonova, N. Mudrik, V. Grogvadze, A. Zhukova, A.I. Gaziev, and R. Bradbury, The Effect of Dietary Supplements of Gene Expression in Mice Tissues,Free Radical Biol. Med. 20:279–284 (1996).

    Article  CAS  Google Scholar 

  89. Cillard, J., P. Cillard, and M. Cormier, Effect of Experimental Factors on the Prooxidant Behaviour of α-Tocopherol,J. Am. Oil Chem. Soc. 57:255–261 (1980).

    CAS  Google Scholar 

  90. Erdman, J.W., Jr., and B.P. Klein, Harvesting, Processing, and Cooking Influences on Vitamin C in Foods, inAscorbic Acid: Chemistry, Metabolism, and Uses, edited by P.A. Seib and B.M. Tolbert American Chemical Society, Washington, D.C., 1982, pp. 498–532.

    Google Scholar 

  91. Kanner, J., H. Mendel, and P. Budowski, Prooxidant and Antioxidant Effects of Ascorbic Acid and Metal Salts in a β-Carotene-Linoleate Model System,J. Food Sci. 42:60–64 (1977).

    Article  CAS  Google Scholar 

  92. Mahoney, J.R., and E. Graf, Role of Alpha-Tocopherol, Ascorbic Acid, Citric Acid and EDTA as Oxidants in Model Systems,,51:1293–1296 (1986).

    Article  CAS  Google Scholar 

  93. Cort, W.M., Antioxidant Properties of Ascorbic Acid in Foods, inAscorbic Acid: Chemistry, Metabolism And Uses, edited by P.A. Seib and B.M. Tolbert, American Chemical Society, Washington, D.C., 1982, pp. 533–550.

    Google Scholar 

  94. Gardner, L.K., and G.D. Lawrence, Benzene Production from Decarboxylation of Benzoic Acid in the Presence of Ascorbic Acid and a Transition-Metal Catalyst,J. Agric. Food Chem. 41:693–695 (1993).

    Article  CAS  Google Scholar 

  95. Lambelet, P., F. Saucy, and J. Löliger, Radical Exchange Reactions Between Vitamin E, Vitamin C and Phospholipids in Autoxidizing Polyunsaturated Lipids,Free Radical Res. 20:1–10 (1994).

    CAS  Google Scholar 

  96. Schaefer, D.M., Q. Liu, C. Faustman, and M.-C. Yin, Supranutritional Administration of Vitamins E and C Improves Oxidative Stability of Beef,J. Nutr. 125:1792S-1798S (1995).

    CAS  Google Scholar 

  97. Farag, R.S., A.Z.M.A. Badei, F.M. Hewedi, and G.S.A. El-Baroty, Antioxidant Activity of Some Spice Essential Oils on Linoleic Acid Oxidation in Aqueous Media,J. Am. Oil Chem. Soc. 66:782–799 (1989).

    Google Scholar 

  98. Allen, J.C., and R.I. Hamilton (eds.),Rancidity in Foods, Elsevier Applied Science, London, 1983.

    Google Scholar 

  99. Sherwin, E.R., Oxidation and Antioxidants in Fat and Oil Processing,J. Am. Oil Chem. Soc. 55:809–814 (1978).

    CAS  Google Scholar 

  100. Satue, M.T., S.W. Huang, and E.N. Frankel, Effect of Natural Antioxidants in Virgin Olive Oil on Oxidative Stability of Refined, Bleached and Deodorized Olive Oil72:1131–1137 (1995).

    CAS  Google Scholar 

  101. Pryor, W.A., T. Strickland, and D.F. Church, Comparison of the Efficiencies of Several Natural and Synthetic Antioxidants in Aqueous Sodium Dodecyl Sulfate Micelle Solution,110:2224–2229 (1988).

    Article  CAS  Google Scholar 

  102. Pryor, W.A., J.A. Cornicelli, L.J. Devall, B. Tait, B.K. Trivedi, D.T. Witiak, and M. Wu, A Rapid Screening Test to Determine the Antioxidant Potencies of Natural and Synthetic Antioxidants,J. Org. Chem. 58:3521–3532 (1993).

    Article  CAS  Google Scholar 

  103. Halliwell, B., Free Radicals and Antioxidants: A Personal View,Nutr. Rev. 52:253–265 (1994).

    Article  CAS  Google Scholar 

  104. Aruoma, O.I., and S. Cuppett (eds.),Antioxidant Methodology in vivo and in vitro Concepts, AOCS Press, Champaign, 1997, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Aruoma, O.I. Assessment of potential prooxidant and antioxidant actions. J Am Oil Chem Soc 73, 1617–1625 (1996). https://doi.org/10.1007/BF02517962

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02517962

Key Words

Navigation