Skip to main content

Advertisement

Log in

Continuous sorption of synthetic dyes on dried biomass of microalga Chlorella pyrenoidosa

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The sorption of thioflavine T (TT) and malachite green (MG) cationic synthetic dyes on dried biomass of green microalga (Chlorella pyrenoidosa) immobilised in polyurethane foam under continuous column systems conditions using spectrophotometric methods of detection was investigated. Data characterising the sorption of TT and MG on microalgal biomass immobilised in polyurethane foam in a column system from single (C 0 = 25 μmol dm−3) or binary equimolar (C 0 = 25 μmol dm−3) dye solutions in the form of breakthrough curves were well described by the Thomas (R 2 = 0.994–0.912), Yoon-Nelson (R 2 = 0.994–0.911), and Clark (R 2 = 0.993–0.911) models. Useful parameters characterising the sorption column system were obtained from these mathematical models. The Thomas model, in particular, provided the Q max (maximal sorption capacity in μmol g−1) parameter for characterisation of biosorbent and also for evaluation of competitive effects in the TT and MG dyes sorption. For the purposes of biomass regeneration, a one-step desorption of the dyes studied from the microalgal biomass in batch and continuous column systems was performed. Efficiency of TT desorption from microalgal biomass increased in the order: deionised H2O (50.7 %), 99.5 vol. % 1,4-dioxane (67 %), 20 mmol dm−3 NiCl2 (83 %), 96 vol. % ethanol (85 %), 0.1 mol dm−3 HCl (89 %), 1 mol dm−3 acetic acid (89 %). In the case of MG, the desorption efficiency increased in the order: deionised H2O (13 %), 20 mmol dm−3 NiCl2 (50 %), 0.1 mol dm−3 HCl (91 %), 99.5 vol. % 1,4-dioxane (94 %), 1 mol dm−3 acetic acid (99 %), 96 vol. % ethanol (> 99 %). The presence of carboxyl, phosphoryl, amino, and hydroxyl groups, the important functional groups for sorption of cationic xenobiotics, was also confirmed on the algae biomass surface by potentiometric titration and ProtoFit modelling software. The data obtained showed that the dried immobilised algae biomass could be used as a sorbent for removing toxic xenobiotics from liquid wastewaters or contaminated waters and also presenting the possibilities of mathematical modelling of sorption processes in continuous column systems in order to obtain important parameters for use in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aksu, Z. (2005). Application of biosorption for the removal of organic pollutants: a review. Process Biochemistry, 40, 997–1026. DOI: 10.1016/j.procbio.2004.04.008.

    Article  CAS  Google Scholar 

  • Ansari, R., & Mosayebzadeh, Z. (2011). Application of polyaniline as an efficient and novel adsorbent for azo dyes removal from textile wastewaters. Chemical Papers, 65, 1–8. DOI: 10.2478/s11696-010-0083-x.

    Article  CAS  Google Scholar 

  • Bohart, G., & Adams, E. Q. (1920). Some aspects of the behavior of charcoal with respect to chlorine. Journal of the American Chemical Society, 42, 523–544. DOI: 10.1021/ja01448a018.

    Article  CAS  Google Scholar 

  • Bradbury, M. H., & Baeyens, B. (2009). Sorption modelling on illite Part I: Titration measurements and the sorption of Ni, Co, Eu and Sn. Geochimica et Cosmochimica Acta, 73, 990–1003. DOI: 10.1016/j.gca.2008.11.017.

    Article  CAS  Google Scholar 

  • Branquinho, C., & Brown, D. H. (1994). A method for studying the cellular location of lead in lichens. The Lichenologist, 26, 83–90. DOI: 10.1006/lich.1994.1007.

    Google Scholar 

  • Charumathi, D., & Das, N. (2012). Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilised dead C. tropicalis. Desalination, 285, 22–30. DOI: 10.1016/j.desal.2011.09.023.

    Article  CAS  Google Scholar 

  • Chen, G. Q., Zeng, G. M., Tang, L., Du, C. Y., Jiang, X. Y, Huang, G. H., Liu, H. L., & Shen, G. L. (2008). Cadmium removal from simulated wastewater to biomass byproduct of Lentinus edodes. Bioresources Technology, 99, 7034–7040. DOI: 10.1016/j.biortech.2008.01.020.

    Article  CAS  Google Scholar 

  • Clark, R. M. (1987). Evaluating the cost and performance of field-scale granular activated carbon systems. Environmental Science & Technology, 21, 573–580. DOI: 10.1021/es00160a008.

    Article  CAS  Google Scholar 

  • Febrianto, J., Kosasih, A. N., Sunarso, J., Ju, I. H., Indraswati, N., & Ismadji, S. (2009). Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies. Journal of Hazardous Materials, 162, 616–645. DOI: 10.1016/j.jhazmat.2008.06.042.

    Article  CAS  Google Scholar 

  • Fernandez, M. E., Nunell, G. V., Bonelli, P. R., & Cukierman, A. L. (2010). Effectiveness of Cupressus sempervirens cones as biosorbent for the removal of basic dyes from aqueous solutions in batch and dynamic modes. Bioresource Technology, 101, 9500–9507. DOI: 10.1016/j.biortech.2010.07.102.

    Article  CAS  Google Scholar 

  • Fernandez, M. E., Nunell, G. V., Bonelli, P. R., & Cukierman, A. L. (2012). Batch and dynamic biosorption of basic dyes from binary solutions by alkaline-treated cypress cone chips. Bioresource Technology, 106, 55–62. DOI: 10.1016/j.biortech.2011.12.003.

    Article  CAS  Google Scholar 

  • Gad, H. M. H., & El-Sayed, A. A. (2009). Activated carbon from agricultural by-products for the removal of Rhodamine-B from aqueous solution. Journal of Hazardous Materials, 168, 1070–1081. DOI: 10.1016/j.jhazmat.2009.02.155.

    Article  CAS  Google Scholar 

  • Gao, J. F., Zhang, Q., Su, K., & Wang, J. H. (2010). Competitive biosorption of Yellow 2G and Reactive Brilliant Red K-2G onto inactive aerobic granules: Simultaneous determination of two dyes by first-order derivative spectrophotometry and isotherm studies. Bioresource Technology, 101, 5793–5801. DOI: 10.1016/j.biortech.2010.02.091.

    Article  CAS  Google Scholar 

  • Hornik, M., Pipiška, M., Augustin, J., Lesny, J., & Baratova, Z. (2007a). Distribution of 137Cs and 60Co in fresh water plants. Cereal Research Communications, 35, 477–480. DOI: 10.1556/crc.35.2007.2.78.

    Article  CAS  Google Scholar 

  • Hornik, M., Pipiška, M., Augustin, J., Lesny, J., & Kočiova, M. (2007b). Distribution of 137Cs and 60Co in components of fresh water system. Cereal Research Communications, 35, 473–476. DOI: 10.1556/crc.35.2007.2.77.

    Article  CAS  Google Scholar 

  • Khataee, A. R. Zarei, M., Dehghan, G., Ebadi, E., & Pourhassan, M. (2011). Biotreatment of a triphenylmethane dye solution using a Xanthophyta alga: Modeling of key factors by neural network. Journal of the Taiwan Institute of Chemical Engineers, 42, 380–386. DOI: 10.1016/j.jtice.2010.08.006.

    Article  CAS  Google Scholar 

  • Koprivanac, N., & Kusic, H. (2008). Hazardous organic pollutants in colored wastewaters (pp. 81). New York, NY, USA: Nova Science Publishers.

    Google Scholar 

  • Lim, S. L., Chu, W. L., & Phang, S. M. (2010). Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresource Technology, 101, 7314–7322. DOI: 10.1016/j.biortech.2010.04.092.

    Article  CAS  Google Scholar 

  • Malik, R., Ramteke, D. S., & Wate, S. R. (2007). Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Management, 27, 1129–1138. DOI: 10.1016/j.wasman.2006.06.009.

    Article  CAS  Google Scholar 

  • Mehta, S. K., & Gaur, J. P. (2005). Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Critical Reviews in Biotechnology, 25, 113–152. DOI: 10.1080/07388550500248571.

    Article  CAS  Google Scholar 

  • Muhamad, H., Doan, H., & Lohi, A. (2010). Batch and continuous fixed-bed column biosorption of Cd2+ and Cu2+. Chemical Engineering Journal, 158, 369–377. DOI: 10.1016/j.cej.2009.12.042.

    Article  CAS  Google Scholar 

  • Naja, G., & Volesky, B. (2006). Multi-metal biosorption in a fixed-bed flow-through column. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 281, 194–201. DOI: 10.1016/j.colsurfa.2006.02.040.

    Article  CAS  Google Scholar 

  • Park, D. H., Yun, Y. S., & Park, J. M. (2010). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15, 86–102. DOI: 10.1007/s12257-009-0199-4.

    Article  CAS  Google Scholar 

  • Rao, K. S., Anand, S., & Venkateswarlu, P. (2011). Modeling the kinetics of Cd(II) adsorption on Syzygium cumini L. leaf powder in a fixed bed mini column. Journal of Industrial and Engineering Chemistry, 17, 174–181. DOI: 10.1016/j.jiec.2011.02.003.

    Article  CAS  Google Scholar 

  • Rathinam, A., Maharshi, B., Janardhanan, S. K., Jonnalagadda, R. R., & Nair, B. U. (2010). Biosorption of cadmium metal ion from simulated wastewaters using Hypnea valentiae biomass: A kinetic and thermodynamic study. Bioresource Technology, 101, 1466–1470. DOI: 10.1016/j.biortech.2009. 08.008.

    Article  CAS  Google Scholar 

  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textiles effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255. DOI: 10.1016/s0960-8524(00)00080-8.

    Article  CAS  Google Scholar 

  • Salleh, M. A. M., Mahmoud, D. K., Karim, W. A. W. A., & Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1–13. DOI: 10.1016/j.desal.2011.07.019.

    Article  CAS  Google Scholar 

  • Tang, L., Zeng, G. M., Shen, G. L., Li, Y. P., Zhang, Y., & Huang, D. L. (2008). Rapid detection of picloram in agricultural field samples using a disposable immunomembranebased electrochemical sensor. Environmental Science & Technology, 42, 1207–1212. DOI: 10.1021/es7024593.

    Article  CAS  Google Scholar 

  • Thomas, H. C. (1944). Heterogeneous ion exchange in a flowing system. Journal of the American Chemical Society, 66, 1664–1666. DOI: 10.1021/ja01238a017.

    Article  CAS  Google Scholar 

  • Turner, B. F., & Fein, J. B. (2006). Protofit: A program for determining surface protonation constants from titration data. Computers & Geosciences, 32, 1344–1356. DOI: 10.1016/j.cageo.2005.12.005.

    Article  CAS  Google Scholar 

  • Verma, A. K., Dash, R. R., & Bhunia, P. (2012). A review on chemical coagulation/flocculation technologies for removal of colour from textile wastewaters. Journal of Environmental Management, 93, 154–168. DOI: 10.1016/j.jenvman.2011.09.012.

    Article  CAS  Google Scholar 

  • Vijayaraghavan, K., & Yun, Y. S. (2008). Bacterial biosorbents and biosorption. Biotechnology Advances, 26, 266–291. DOI: 10.1016/j.biotechadv.2008.02.002.

    Article  CAS  Google Scholar 

  • Volesky, B. (2003). Sorption and biosorption (pp. 316). Quebec, Canada: BV Sorbex.

    Google Scholar 

  • Wang, J. L., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27, 195–226. DOI: 10.1016/j.biotechadv.2008.11.002.

    Article  Google Scholar 

  • Yan, G. G., Viraraghavan, T., & Chen, M. (1999). A new model for heavy metal removal in a biosorption column. Adsorption Science & Technology, 19, 25–43. DOI: 10.1260/0263617011493953.

    Article  Google Scholar 

  • Yoon, Y. H., & Nelson, J. H. (1984). Application of gas adsorption kinetics. I. A theoretical model for respirator cartridge service time. American Industrial Hygiene Association Journal, 45, 509–516. DOI: 10.1080/15298668491400197.

    CAS  Google Scholar 

  • Zhang, Y. S., Liu, W. G., Xu, M., Zheng, F., & Zhao, M. J. (2010). Study of the mechanisms of Cu2+ biosorption by ethanol/caustic-pretreated baker’s yeast biomass. Journal of Hazardous Materials, 178, 1085–1093. DOI: 10.1016/j.jhazmat.2010.02.051.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Horník.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Horník, M., Šuňovská, A., Partelová, D. et al. Continuous sorption of synthetic dyes on dried biomass of microalga Chlorella pyrenoidosa . Chem. Pap. 67, 254–264 (2013). https://doi.org/10.2478/s11696-012-0235-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11696-012-0235-2

Keywords

Navigation