Skip to main content
Log in

Calcium-aluminum-silicate-hydrate “cement” phases and rare Ca-zeolite association at Colle Fabbri, Central Italy

  • Research Article
  • Published:
Central European Journal of Geosciences

Abstract

Very high temperature, Ca-rich alkaline magma intruded an argillite formation at Colle Fabbri, Central Italy, producing cordierite-tridymite metamorphism in the country rocks. An intense Ba-rich sulphate-carbonate-alkaline hydrothermal plume produced a zone of mineralization several meters thick around the igneous body. Reaction of hydrothermal fluids with country rocks formed calcium-silicate-hydrate (CSH), i.e., tobermorite-afwillite-jennite; calcium-aluminum-silicate-hydrate (CASH) — “cement” phases - i.e., thaumasite, strätlingite and an ettringite-like phase and several different species of zeolites: chabazite-Ca, willhendersonite, gismon-dine, three phases bearing Ca with the same or perhaps lower symmetry of phillipsite-Ca, levyne-Ca and the Ca-rich analogue of merlinoite. In addition, apophyllite-(KF) and/or apophyllite-(KOH), Ca−Ba-carbonates, portlandite and sulphates were present. A new polymorph from the pyrrhotite group, containing three layers of sphalerite-type structure in the unit cell, is reported for the first time. Such a complex association is unique. Most of these minerals are specifically related to hydration processes of: (1) pyrometamorphic metacarbonate/metapelitic rocks (natural analogues of cement clinkers); (2) mineralization between intrusive stocks and slates; and (3) high-calcium, alkaline igneous rocks such as melilitites and foidites as well as carbonatites. The Colle Fabbri outcrop offers an opportunity to study in situ complex crystalline overgrowth and specific crystal chemistry in mineral phases formed in igneous to hydrothermal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stoppa F., L’euremite di Colle Fabbri (Spoleto): Un litotipo ad affinità carbonatitica in Italia. Bollettino. Società Geologica Italiana, 1988, 107, 239–248

    Google Scholar 

  2. Stoppa F., Rosatelli G., Ultra-mafic intrusion triggers hydrotermal explosions at Colle Fabbri (Spoleto, Umbria), Italy, J. Volcanol. Geoth. Res., 2009, 187, 85–92

    Article  Google Scholar 

  3. Stoppa F., Sharygin V.V., Melilitolite intrusion and pelite digestion by high temperature kamafugitic magma at Colle Fabbri, Spoleto, Italy, Lithos, 2009, 112, 306–320

    Google Scholar 

  4. Stoppa F., Cundari A., Rosatelli G., Woolley A.R., Leucite melilitolites in Italy: Genetic aspects and relationship with associated alkaline rocks and carbonatites, Periodico di mineralogia, 2003, 72, 223–251

    Google Scholar 

  5. Stoppa F., Rosatelli G., Principe C., Le vulcaniti del Monte Vulture, classificazione modale e considerazioni seriali. In: Principe C. (Ed.) La geologia del Monte Vulture. Regione Basilicata, Dipartimento Ambiente, Territorio e Politiche della Sostenibilità, Lavello 2006, 87–104

  6. Stoppa F., Sharygin V.V., Nyerereite from carbonatite rocks at Vulture volcano: implications for mantle metasomatism andpetrogenesis of alkali carbonate melts. Central European Journal of Geosciences, 2009, 1, 131–151

    Article  Google Scholar 

  7. Ding J., Fu Y., Beaudoin J.J., Strätlingite formation in high-alumina cement-silicate fume systems: Significance of sodium ions. Cement Concrete Res., 1995, 25, 1311–1319

    Article  Google Scholar 

  8. Macphee E. D., Barnett S.J., Solution properties of solids in the ettringite-thaumasite solid solution series., Cement Concrete Res., 2004, 34, 1591–1598

    Article  Google Scholar 

  9. Shimada Y., Young J.F., Thermal stability of ettringite in alkaline solutions at 80° C., Cement Concrete Res., 2004, 2261–2268

  10. Passaglia E., Galli E., Vertumnite, a new natural silicate. Tschermaks Mineralogiche und Petrografische Mitteilungen, 1977, 24, 57–66

    Article  Google Scholar 

  11. Passaglia E., Turioni B., Silicati ed altri minerali di Montalto di Castro (Viterbo), R.M.I. (please expand the acronime), 1982, 4, 97–110

    Google Scholar 

  12. Schüller W., Betz V., Die mineralien vom Emmelberg, Lapis, 1986, 11, 11–25

    Google Scholar 

  13. Taucher J., Von Hollerer C.E., Ein Ca-reicher Xenolith aus dem Basaltsteinbruch Kloch, Nordlicher Bruch, Klocher Klause (Steiermark, Osterreich). Mitt. Naturwiss. Ver. Steiermark, 2000, 130, 19–30

    Google Scholar 

  14. Baumgärtl U., Cruse B., Die Mineralien der Vulkaneifel, Aufschluss, 2007, 58, 257–400

    Google Scholar 

  15. Gross S., The mineralogy of the Hatrurim Formation, Israel, Geol. Surv. Isr. Bull., 1977, 70, 1–80

    Google Scholar 

  16. Sharygin V.V., Sokol E.V., Vapnik Y., Minerals of the pseudobinary perovskite-brownmillerite series from combustion metamorphic larnite rocks of the Hatrurim Formation, Israel, Russ. Geol. Geophys., 2008, 49, 709–726

    Article  Google Scholar 

  17. Barker D.S., Nixon P.H., High-Ca, low alkali carbonatite volcanism at Fort Portal, Uganda, Contrib. Mineral. and Petr., 1989, 130, 166–177

    Article  Google Scholar 

  18. Wheeler S., Spigarelli S., Stoppa F., Rinaldi R., Secondary minerals from the igneous complex of Colle Fabbri, Spoleto (PG), Plinius, 1996, 16, 211–212

    Google Scholar 

  19. Hentschel G., Die Lavaströme der Graulai: eine neue Fundstelle in der Westeifel, Lapis, 1993, 18, 11–23

    Google Scholar 

  20. Bruker, SAINT v7.60A. Bruker AXS Inc., Madison, Wisconsin, USA, 2009

    Google Scholar 

  21. Sheldrik G. M., SADABS, University of Göttigen, Germany, 2002

    Google Scholar 

  22. Sheldrik G. M., XPREP, University of Göttigen, Germany, 2007.

    Google Scholar 

  23. Bonaccorsi E., Merlino S., Calcium silicate hydrate (CSH) minerals: Structures and transformations, 32nd International Geological Congress, Florence, Italy, 20–28 August 2004, Abstract Volume, 2004, 215 F. Stoppa, F. Scordari, E. Mesto, V.V. Sharygin, G. Bortolozzi

  24. Bonaccorsi E., Merlino S., Kamph A. The crystal structure of tobermorite 14 Å (plombierite), a C-S-H phase, J. Am. Ceram. Soc., 2005, 88, 505–512

    Article  Google Scholar 

  25. Parry J., Wright F.E., Afwillite, a new hydrous calcium silicate, from Dutoitspan Mine, Kimberley, South Africa. Mineral. Mag., 1925, 20, 277–285

    Article  Google Scholar 

  26. Zhou Q., Lachowski E.E., Glasser F.P., Metaettringite, a decomposition product of ettringite. Cement Concrete Res., 2004, 34, 703–710

    Article  Google Scholar 

  27. Edge R.A., Taylor H.F.W., Crystal Structure of Thaumasite, [Ca3Si(OH)6 12H2O](SO4) (CO3), Acta Cryst., 1971, B27, 594

    Google Scholar 

  28. Rinaldi R., Sacerdoti M., Passaglia E., Strätlinigite: crystal structure, chemistry and a re-examination of its polytype vertumnite, Eur. J. Mineral., 1990, 2, 841–849

    Google Scholar 

  29. Galli E., Passaglia E., Vertumnite: Its crystal structure and relationship with natural and synthetic phases, Tschermacks Min. Petr. Mitt., 1978, 25, 33–46

    Article  Google Scholar 

  30. Coombs D.S., Alberti A., Armbrutser T., Artioli G., Galli E., Grice J.D., Liebau F., Minato H., et al., G. Recommended nomenclature for zeolite minerals: Report of the subcommittee on zeolites of the international mineralogical association, commission on new minerals and mineral names. The Canadian Mineralogist, 1997, 35, 1571–1606

    Google Scholar 

  31. Mazzi F., Galli E., The tetrahedral framework of chabazite. Neues Jahrb. Mineral., Monatsh., 1983, 461–480

  32. Gottardi G., Galli E., Natural Zeolites, Springer-Verlag, Berlin, 1985

    Google Scholar 

  33. Stoppa F., Sharygin V.V., Cundari A., New mineral data from the kamafugite-carbonatite association: The melilitolite from Pian di Celle, Italy. Miner. Petrol., 1997, 61, 27–45

    Article  Google Scholar 

  34. Postl W., Walter F., Tetranatrolith aus dem Basaltbruch Stürgkh-Hrusak in Klöch, Steiermark. In: Niedermayr G, Postl W, Walter F., Eds., Neue Mineralfunde aus österreich XXXIV, Carinthia II, 1985, 175, 250

  35. Blass G., Graf H.W., Neufunde von bekannten Fundorten (VIII), Mineralien-Welt, 1993, 5, 41–48

    Google Scholar 

  36. Rinaldi R., Pluth J.J., Smith J.V., Zeolites of the phillip-site family. Refinement of the crystal structures of phillipsite and harmotome, Acta Crystallogr., 1974, D.30, 2426–2433

    Google Scholar 

  37. Gualtieri A.F., Accurancy of XRPD OPA using the combined Ritveld-RIR method. J. Appl. Crystallogr., 2000, 33, 267–278

    Article  Google Scholar 

  38. Gatta G.D., Cappelletti P., Rotiroti N., Slebodnick C., Rinaldi R., New insights into the crystal structure and crystal chemetry of the zeolite phillipsite. Am. Mineral., 2009, 94, 190–199

    Article  Google Scholar 

  39. Passaglia E., Pongiluppi D., Rinaldi R., Merlinoite, A new mineral of the zeolite group. Neues Jahrb. Mineal., Monatsh., 1977, 355–364

  40. Moore A.E., Taylor H.F.W., Crystal Structure of Ettringite, Acta Cryst., 1970, B26, 386

    Google Scholar 

  41. Steefela C.I, Lichtnerb P.C., Multicomponent reactive transport in discrete fractures II: Infiltration of hyperalkaline groundwater at Maqarin, Jordan, a natural analogue site, J. Hydrol., 1998, 209, 200–224

    Google Scholar 

  42. Suzuki S., Sinn E., 1.4 nm tobermorite-like calcium silicate hydrate prepared at room temperature from Si(OH)4 and CaCl2 solutions, J. Mater. Sci. Lett., 1992, 12, 542–544

    Google Scholar 

  43. Diamond S., White J.L., Dolch W.L., Effects of isomorphous substitution in hydrothermally-synthesized tobermorite, Am. Mineral., 1966, 51, 388–401

    Google Scholar 

  44. Eytier C., Eytier J.R., Favreau G., Devouard B., Vigier J., Minéraux de pyrométamorphisme de Lapanouse de Severac (Aveuron), Cahier des Micromonteurs, 2004, 85, 3–32

    Google Scholar 

  45. Favreau G., Meisser N., Chiappero P.J., Saint-Maime (alpes-de-Haute-Provence): Un Exemple de pyromé-tamorphisme en région provençale, Cahier des Micromonteurs, 2004, 85, 59–91

    Google Scholar 

  46. Capitanio F., Comment on Melluso et al. (2003). The Ricetto and Colle Fabbri wollastonite and melilite-bearing rocks of the central Apennines, Italy, Am. Mineral., 2005, 90, 1934–1939

    Article  Google Scholar 

  47. Stoppa F, Rosatelli G., Cundari A., Castorina F., Woolley, A.R., Comments on Melluso et al. (2003) and their reported data and interpretation of some wollastonite- and melilite-bearing rocks from the Central Apennines of Italy, Am. Mineral., 2005, 90, 1919–1925

    Article  Google Scholar 

  48. Peacor D.R., Dunn P.J., Simmons W.B., Tillmanns E., Fisher R.X., Willhendersonite, a new zeolite isostructural with chabazite, Am. Mineralogist, 1984, 69, 186–189

    Google Scholar 

  49. Tillmanns E., Fischer R.X., Baur W.H., Chabazite-type framework in the new zeolite willhendersonite. Neues Jahrb, Mineral. Monatsh., 1984, 547–558

  50. Stoppa F., Lloyd F.E., Rosatelli G., CO2 as the propellant of carbonatite-kamafugite cognate pairs and the eruption of diatremic tuffisite. Periodico di Mineralogia, Special Issue, Eurocarb, 2003, 72, 205–222

    Google Scholar 

  51. Steefela C.I, Lichtnerb P.C., Multicomponent reactive transport in discrete fractures II: Infiltration of hyperalkaline groundwater at Maqarin, Jordan, a natural analogue site. J. Hydrol., 1998, 209, 200–224

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Stoppa, F., Scordari, F., Mesto, E. et al. Calcium-aluminum-silicate-hydrate “cement” phases and rare Ca-zeolite association at Colle Fabbri, Central Italy. Cent. Eur. J. Geosci. 2, 175–187 (2010). https://doi.org/10.2478/v10085-010-0007-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/v10085-010-0007-6

Keywords

Navigation