Skip to main content
Log in

Nyerereite from carbonatite rocks at Vulture volcano: implications for mantle metasomatism and petrogenesis of alkali carbonate melts Research Article

  • Published:
Central European Journal of Geosciences

Abstract

Vulture volcano displays a wide range of mafic to alkaline, carbonate-, and/or CaO-rich volcanic rocks, with subvolcanic and plutonic rocks together with mantle xenoliths in pyroclastic ejecta. The roles of magmatic volatiles such as CO2, S, and Cl have been determined from compositions and trapping temperatures of inclusions in phenocrysts, which include the Na-K-Ca-carbonate nyerereite within melilite. We surmise that this alkali carbonate crystallised from an appropriate carbonatitic melt at relatively high temperature. Carbonatitic metasomatic features are traceable throughout many of the mantle xenoliths, and various carbonatitic components are found in the late stage extrusive suite. There is no evidence that alkali carbonatite developed as a separate magma, but it may have been an important evolutionary stage. We compare the rare occurrence of nyerereite at Vulture with other carbonatites and with an unaltered kimberlite from the Udachnaya pipe. We review the evidence at Vulture for associated carbonatitic metasomatism in the mantle, and we suggest that low viscosity alkali carbonatitic melts may have a primary and much deeper origin than previously considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lavecchia G., Stoppa F., The tectonic significance of Italian magmatism: An alternative view to the popular interpretation, Terra Nova, 1996, 8, 435–446

    Article  Google Scholar 

  2. Stoppa F., Woolley A.R., The Italian carbonatites: field occurrence, petrology and regional significance, Miner. Petrol., 1997, 59, 43–67

    Article  Google Scholar 

  3. Lavecchia G., Creati N., The intramountain ultraalkaline province (IUP) of Italy: A brief review with consideration on the thickness ofthe underlying lithosphere, Boll. Soc. Geol. Ital., 2002, 1, 87–98

    Google Scholar 

  4. Stoppa F., CO2 magmatism in Italy: From deep carbon to carbonatite volcanism. In: Vladykin N.V. (Ed.), Alkaline Volcanism, Its Source and Plumes, Publishing House of the Institute of Geography, SB RAS, 2007, 109–126

  5. Panza G.F., Pontevivo A., Chimera G., Raykova R., Aoudia A., The lithosphere —asthenosphere: Italy and Surroundings, Episodes, 2003, 26, 169–174

    Google Scholar 

  6. Vannucci G., Gasperini P., The new release of the database of Earthquake Mechanisms of the Mediterranean Area (EMMA Version 2), Ann. Geophys.-Italy, 2004, 47, 307–334

    Google Scholar 

  7. Chiarabba C., Jovane L., Stefano R. di, A new view of Italian seismicity using 20 years of instrumental recordings, Tectonophysics, 2005, 395, 251–268

    Article  Google Scholar 

  8. Principe C., Giannandrea P., Storia evolutiva del Monte Vulture —Monte Vulture volcano evolutive history. In: Principe C. (Ed.), Geologia del Monte Vulture. Monografia geologica, Regione Basilicata Dipartimento Ambiente e Territorio, Finiguerra, Lavello, 2006, 49–55

    Google Scholar 

  9. Stoppa F., Principe C., Eruption style and petrology of a new carbonatitic suite from the Mt. Vulture (Southern Italy): The Monticchio Lakes Formation, J. Volcanol. Geoth. Res., 1998, 80, 137–153

    Article  Google Scholar 

  10. Jones A.P., Kostoula T., Stoppa F., Woolley A.R., Petrography and mineral chemistry ofmantle xenoliths in a carbonate-rich melilititic tuff from Vulture volcano, southern Italy, Mineral. Mag., 2000, 64, 593–613

    Article  Google Scholar 

  11. Bailey D.K., Collier J.D., Carbonatite-melilitite asso-Francesco Stoppa, Adrian P. Jones, Victor V. Sharygin ciation in the Italian collision zone and the Ugandan rifted craton: Significant common factors, Mineral. Mag., 2000, 64, 675–682

    Article  Google Scholar 

  12. Gambardella B., Cardellini C., Chiodini G., Frondini F., Marini L., Ottonello et al., Fluxes of deep CO2 in the volcanic areas of Central-Southern Italy, J. Volcanol. Geoth. Res., 2004, 136, 31–52

    Article  Google Scholar 

  13. Rogie J.D., Kerrick D.M., Chiodini G., Frondini F., Flux measurements of non volcanic CO2 emission from some vents in central Italy, J. Geophys. Res., 2000, 105, 8435–8445

    Article  Google Scholar 

  14. Woolley A.R., Kempe D.R.C., Carbonatites: Nomenclature, average chemical compositions and element distribution. In: Bell K. (Ed.), Carbonatites: Genesis and Evolution. Unwin Hyman, London, 1989, 1–14

    Google Scholar 

  15. Wyllie P.J., Ryabchikov I.D., Volatile components, magmas, and critical fluids in upwelling mantle, J. Petrol., 2000, 41, 1195–1206

    Article  Google Scholar 

  16. Daly R. A., Origin of alkaline rocks, Bulletin of the Geological Society of America, 1910, 21, 87–118

    Google Scholar 

  17. Keller J., Krafft M., Effusive natrocarbonatite activity of Oldoinyo Lengai, June 1988, B. Volcanol., 1990, 52, 629–645

    Article  Google Scholar 

  18. Harmer R.E., Lee C.A., Eglington B.M., A deep mantle source for carbonatite magmatism; evidence from the nephelinites and carbonatites of the Buhera district, SE Zimbabwe, Earth Planet. Sc. Lett., 1998, 158, 131–142

    Article  Google Scholar 

  19. Dalton J.A., Wood B.J., The compositions of primary carbonate melts and their evolution through wallrock reaction in the mantle, Earth Planet. Sc. Lett., 1993, 119, 511–525

    Article  Google Scholar 

  20. Rosatelli G., Stoppa F., Jones A.P., Intrusive calcio-carbonatite occurrence from Mt. Vulture volcano, southern Italy, Mineral. Mag., 2000, 64, 615–624

    Article  Google Scholar 

  21. Stoppa F., Rosatelli G., Principe C., Classificazione modale delle vulcaniti del Monte Vulture —Modal classification of Monte Vulture volcanics. In: Principe C. (Ed.), Geologia del Monte Vulture. Monografia geologica, Regione Basilicata Dipartimento Ambiente e Territorio. Finiguerra, Lavello, 2006, 87–105

    Google Scholar 

  22. Zaitsev A.N., Keller J., Mineralogical and chemical transformation of Oldoinyo Lengai natrocarbonatites, Tanzania, Lithos, 2006, 91, 191–207

    Article  Google Scholar 

  23. Ignacio C. de, Muñoz M., Sagredo J., Fernández-Santín S., and Johansson Å.. Isotope geochemistry and FOZO mantle component of the alkaline —carbonatitic association of Fuerteventura, Canary Islands, Spain, Chem. Geol., 2006, 232, 99–113

    Article  Google Scholar 

  24. Bailey D.K., Carbonate volcanics in Italy: Numerical tests for the hypothesis of lava sedimentary limestone mixing, Periodico di Mineralogia, 2005, 74, 205–208

    Google Scholar 

  25. Stoppa, F., Cundari, A., Rosatelli, G., and Woolley, A. R., Leucite melilitolites in Italy: Genetic aspects and relationship with associated alkaline rocks and carbonatites. Periodico di Mineralogia, Special Issue Eurocarb, 2003, 72, 223–251

    Google Scholar 

  26. Junqueira-Brod, T.C., Brod, J.A., Thompson, R.N., and Gison, S.A., Spinning droplets —a conspicuous lapillisize structure in Kamafugitic diatremes of Southern Goiàs Brazil, Revista Brasileira de Geociencias, 1999, 29, 437–440

    Google Scholar 

  27. D’Orazio M., Innocenti F., Tonarini S., Doglioni C., Carbonatites in a subduction system: The Pleistocene alvikites from Mt. Vulture (southern Italy), Lithos, 2007, 98, 313–334

    Article  Google Scholar 

  28. Stoppa F., Alkaline and ultramafic lamprophyres in Italy: Distribution, mineral phases, and bulk rock data. In: Vladykin N.V. (Ed.), Deep-Seated Magmatism, Its Sources and Plumes. Publishing House of the Institute of Geography, SB RAS, 2008, 209-238

  29. McKie D., Frankis E.J., Nyerereite: A new volcanic carbonate mineral from Ol Doinyo Lengai, Tanzania, Z. Kristallogr., 1976, 145, 73–95

    Article  Google Scholar 

  30. Mitchell R.H., Carbonate-carbonate immiscibility, neighborite and potassium iron sulphide in Oldoinyo Lengai natrocarbonatite, Mineral, Mag., 1997, 61, 779–789

    Article  Google Scholar 

  31. Mitchell R.H., Mineralogy of stalactites formed by subaerial weathering of natrocarbonatite hornitos at Oldoinyo Lengai, Tanzania, Mineral. Mag., 2006, 70, 437–444

    Article  Google Scholar 

  32. Zaitsev A.N., Keller J., Spratt J., Jeffries T.E., Sharygin V.V., Chemical composition of nyerereite and gregoryite from natrocarbonatites of Oldoinyo Lengai, Tanzania, Zapiski Vserossüskogo Mineralogicheskogo Obshchestva, 2008, 137, 101–111 (in Russian)

    Google Scholar 

  33. Zaitsev A.N., Keller J., Spratt J., Perova E.N., Kearsley A., Nyerereite-pirssonite-calcite-shortite relationships in altered natrocarbonatite, Oldoinyo Lengai, Tanzania, Can. Mineral., 2008, 46, 843–860

    Article  Google Scholar 

  34. Kapustin Y.L., Mineralogy of Carbonatites. Amerind Publishing Co, New Dehli, India, 1980

    Google Scholar 

  35. Egorov K.N., Ushchapovskaya Z.F., Kashaev A.A., Bogdanov G.V., Sizykh I.I., Zemkorite —a new carbonate from Yakutian kimberlites, Dokl. Akad. Nauk SSSR+, 1988, 301, 188–192

    Google Scholar 

  36. Parthasarathy G., Chetty T.R.K., Haggerty S.E., Thermal stability and spectroscopic studies of zemkorite: A carbonate from the Venkatampalle kimberlite of southern India, Am. Mineral., 2002, 87, 1384–1389

    Google Scholar 

  37. Kamenetsky V.S., Kamenetsky M.B., Sharygin V.V., Faure K., Golovin A.V., Chloride and carbonate immiscible liquids at the closure of the kimberlite magma evolution (Udachnaya-East kimberlite, Siberia), Chem. Geol., 2007, 237, 384–400

    Article  Google Scholar 

  38. Sharygin V.V., Kamenetsky V.S., Kamenetsky M.B., Potassium sulfides in kimberlite-hosted chloride-“nyerereite” and chloride clasts of Udachnaya-East pipe, Yakutia, Russia, Can. Mineral., 2008, 46, 1079–1095

    Article  Google Scholar 

  39. Kogarko L.N., Plant D.A., Henderson C.M.B., Kjarsgaard B.A., Na-rich carbonate inclusions in perovskite and calzirtite from the Guli intrusive Ca-carbonatite, polar Siberia, Contrib. Mineral. Petr., 1991, 109, 124–129

    Article  Google Scholar 

  40. Veksler I.V., Nielsen T.F.D., Sokolov S.V., Mineralogy of crystallized melt inclusions from Gardiner and Kovdor ultramafic alkaline complexes: Implications for carbonatite genesis, J. Petrol., 1998, 39, 2015–2031

    Article  Google Scholar 

  41. Panina L.I., Sazonov A.M., Usol’tseva L.M., Melilitic and monticellite-bearing rocks of the Krestovskaya intrusion (north of Siberian Platform) and their genesis, Geol. Geofiz., 2001, 42, 1313–1332

    Google Scholar 

  42. Zaitsev A.N., Chakhmouradian A.R., Calcite-amphibole-clinopyroxene rock from the Afrikanda Complex, Kola Peninsula, Russia: Mineralogy and a possible link to carbonatites. II. Oxysalt minerals, Can. Mineral., 2002, 40, 103–120

    Article  Google Scholar 

  43. Kamenetsky M.B., Sobolev A.V., Kamenetsky V.S., Maas R., Danyushevsky L.V., Thomas R. et al., Kimberlite melts rich in alkali chlorides and carbonates: A potent metasomatic agent in the mantle, Geology, 2004, 32, 845–848

    Article  Google Scholar 

  44. Golovin A.V., Sharygin V.V., Pokhilenko N. P., Melt inclusions in olivine phenocrysts in unaltered kimberlites from the Udachnaya-East pipe, Yakutia: Some aspects of kimberlite magma evolution during late crystallization stages, Petrology, 2007, 15, 168–183

    Article  Google Scholar 

  45. Kogarko L.N., Turkov V.A., Crystallization features of ultrabasic alkaline melts based on study ofinclusions (Kugda massif, Polar Siberia). In: Shcherbak, N.P. (Ed.), Alkaline magmatism of the Earth and its ore potential, Kiev, Logos, 2007, 116–118 (in Russian)

    Google Scholar 

  46. Mitchell R.H., Belton F., Niocalite-cuspidine solid solution and manganoan monticellite from natrocar-bonatite, Oldoinyo Lengai, Tanzania, Mineral. Mag., 2004, 68, 787–799

    Article  Google Scholar 

  47. Stoppa F., Lupini L., Mineralogy and petrology of the Polino monticellite calciocarbonatite (Central Italy), Miner. Petrol., 1993, 49, 213–231

    Article  Google Scholar 

  48. Cundari A., Ferguson A.K.. Petrogenetic relationship between melilitite and lamproite in the Roman Region: The lavas of S. Venanzo and Cupaello, Contrib. Mineral. Petr., 1991, 107, 343–357

    Article  Google Scholar 

  49. Melluso L., Morra V., Di Girolamo P., The Mt. Vulture volcanic complex (Italy): Evidence for distinct parental magmas and for residual melts with melilite, Miner. Petrol., 1996, 56, 226–250

    Article  Google Scholar 

  50. Solovova I.P., Girnis A.V., Kogarko L.N., Kononkova N.N., Rosatelli G., Stoppa F., Compositions of magmas and carbonate-silicate liquid immiscibility in the Mt. Vulture alkaline igneous complex, Italy, Lithos, 2005, 85, 113–128

    Article  Google Scholar 

  51. Rosatelli G., Wall F., Stoppa F., Calcio-carbonatite melts and metasomatism in the mantle beneath Mt. Vulture (Southern Italy), Lithos, 2007, 99, 3–4, 229–248

    Article  Google Scholar 

  52. Wagner C., Mokhtari A., Deloule E., Chabaux F., Carbonatite and Alkaline Magmatism in Taourirt (Mo-rocco): Petrological, Geochemical and Sr-Nd Isotope Characteristics, J. Petrol., 44, 2003, 937–965

    Article  Google Scholar 

  53. Jones A.P., Mafic silicates from the nepheline syenites of the Mozedlt Centre, South Greenland, Mineral. Mag., 1984, 48, 1–12

    Article  Google Scholar 

  54. Woolley A.R., Church A.A., 2005. Extrusive carbonatites: A brief review, Lithos, 2005, 84, 1–14

    Article  Google Scholar 

  55. Stoppa F., Lloyd F., Rosatelli G., CO2 as the virtual propellant of carbonatite-kamafugite conjugate pairs and the eruption of diatremic tuffisite, Periodico di Mineralogia, Special Issue Eurocarb, 2003b, 72, 205–222

    Google Scholar 

  56. Panina L.I., Stoppa F., Usoltseva L.M., Genesis of melilitite rocks of Pian di Celle Volcano, Umbrian Kamafugite Province, Italy: Evidence from melt in-clusions in minerals, Petrology, 2003, 11, 365–382

    Google Scholar 

  57. Marini L., Paiotti A., Principe C., Ferrara G., Cioni R., Isotopic ratio concentration of sulfur in the undersaturated alkaline magmas of Vulture Volcano (Italy), B. Volcanol., 1994, 56, 487–492

    Article  Google Scholar 

  58. Bell K., Castorina F., Lavecchia G., Rosatelli G., Stoppa F., Is there a mantle plume beneath Italy?, EOS, 2004, 85, 546–547

    Google Scholar 

  59. Woolley A.R., Bailey D.K., Castorina F., Rosatelli G., Stoppa F., Wall F., Reply to: Carbonate-rich pyroclastic rocks from Central Apennines: Carbonatites or carbonated rocks? A commentary, Peccerillo A., Periodico di Mineralogia, 2005, 74, 183–194

    Google Scholar 

  60. Bell K., Kjasgaard B., Discussion of Peccerillo, 2004, Carbonate-rich pyroclastic rocks from Central Apennines: Carbonatites or carbonate-rich rocks?, Periodico di Mineralogia, 2005, 75, 85–92

    Google Scholar 

  61. Peccerillo A., Plio-Quaternary Volcanism in Italy: Petrology, Geochemistry, Geodynamics, Springer, Berlin, 2005

    Google Scholar 

  62. Gittins J., Jago B.C., Differentiation of natrocarbonatite magma at Ol Doinyo Lengai volcano, Tanzania, Mineral. Mag., 1998, 62, 759–768

    Article  Google Scholar 

  63. Wallace M. E, Green D.H, An experimental determination of primary carbonatite magma composition, Nature, 1988, 335, 343–346

    Article  Google Scholar 

  64. Izraeli E.S., Harris J.W., Navon O., Brine inclusions in diamonds: A new upper mantle fluid, Earth Planet. Sc. Lett., 2001, 187, 323–332

    Article  Google Scholar 

  65. Tomlinson E.A., De Schrijver I., De Corte K., Jones A.P., Moens L., Vanhaecke F., Trace element compositions of submicroscopic inclusions in coated diamond: A tool for understanding diamond petrogenesis, Geochim. Cosmochim. Ac., 2005, 69, 4719–4732

    Article  Google Scholar 

  66. Moine B.N., Gregoire M., O’Reilly S.Y., Delpech G., Sheppard S.M.F., Lorand J.P. et al., Carbonatite melt in oceanic upper mantle beneath the Kerguelen Archipelago, Lithos, 2004, 75, 239–252

    Article  Google Scholar 

  67. Dobson D.P., Jones A.P., Rabe R., Sekine T., Kurita K., Taniguchi K.T. et al., In-situ measurement of viscosity and density of carbonate melts at high pressure, Earth Planet. Sc. Lett., 1996, 143, 207–215

    Article  Google Scholar 

  68. Taniguchi T., Dobson D., Jones A.P., Rabe R., Milledge H.J., 1996. Synthesis of cubic diamond in the graphite-magnesium carbonate and graphite-K2Mg(CO3)2 systems at high pressure of 9–10 GPa region, J. Mater. Res., 1996, 11, 2622–2632

    Article  Google Scholar 

  69. Oganov A.R., Ono S., Ma Y., Glass C.W., Garcia A., Novel high-pressure structures of MgCO3, CaCO3 and CO2 and their role in the Earth’s lower mantle, Earth Planet. Sc. Lett., 2008, 273, 38–47

    Article  Google Scholar 

  70. Isshiki M., Irifune T., Hirose K., Ono S., Ohishi Y., Watanuki T. et al., Stability ofmagnesite and its high-pressure form in the lowermost mantle, Nature, 2004, 427, 60–63

    Article  Google Scholar 

  71. Sharygin V.V., Kamenetsky V.S., Zaitsev A.N., Kamenetsky M.B. Immiscible melt inclusions in nepheline phenocrysts from nephelinite lavas, Oldoinyo Lengai: heating experiments and compositional constraints. in: Geochemistry of magmatic rocks. School “Geochemistry of alkaline rocks”, Moscow, Russia. Abstract book, 2009

  72. Jones A.P., Upper-mantle enrichment by kimberlitic or carbonatitic magmatism. In: Bell K. (Ed.), Carbonatites-Genesis and Evolution, London: Unwin Hyman, 1989, 448–463

    Google Scholar 

  73. LeBas M.J., Nephelinites and carbonatites, Geological Society of London, 1987, 30, 53–83

    Article  Google Scholar 

  74. Vichi G., Stoppa F., Wall F., 2005. The carbonate fraction in carbonatitic Italian lamprophyres, Lithos, Spe-cial Issue Eurocarb, 2005, 85, 154–170

    Google Scholar 

  75. Stracke A., Hofmann A.W., Hart S.R., FOZO, HIMU, and the rest of the mantle zoo, Geochem. Geoph. Geosy., 2005, 6., DOI:10.1029/2004GC000824

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Stoppa, F., Jones, A.P. & Sharygin, V.V. Nyerereite from carbonatite rocks at Vulture volcano: implications for mantle metasomatism and petrogenesis of alkali carbonate melts Research Article. Cent. Eur. J. Geosci. 1, 131–151 (2009). https://doi.org/10.2478/v10085-009-0012-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.2478/v10085-009-0012-9

Keywords

Navigation