Skip to main content
Log in

Bioactive compounds in sweet rowanberry fruits of interspecific Rowan crosses

  • Research Article
  • Published:
Central European Journal of Biology

Abstract

Sweet rowanberries originated by the crossbreeding of wild rowanberries with other fruit species such as apples, medlars or black chokeberries. They are highly resistant to cold climate. In contrast with wild rowanberries, they have sweet mild taste and show less parasorbic acid toxicity, which can be eliminated, when the consumption is excessive, by heating. The objective of the work was to determine selected antioxidant properties in 6 cultivars. The analyses showed that the contents of total phenolics, total flavonoids and ascorbic acid were high. Similarly, antioxidant capacity (6.58–9.62 g of ascorbic acid equivalents kg−1) was also high. The work brings novel data, in particular, when comparing the cultivars; moreover, results regarding reactive oxygen and nitrogen species scavenging activity in sweet rowanberries are being published for the first time. The sweet rowanberry extracts (10%) showed inhibitory ability on hydroxyl radical (16.12–24.73%), superoxide anion (26.74–34.02%), nitric oxide (24.75–31.39%), and lipid peroxidation (7.93–13.12%). The values obtained are even many times higher than those found in common commercial fruit species like apples. Therefore, sweet rowanberries appear to be a promising fruit species for human nutrition, especially due to their high content of bioactive substances and ease of cultivation in worse climatic and soil conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tetera V., Fruit of the White Carpathians [Ovoce Bilych Karpat], CSOP, Veseli nad Moravou, Czech Republic, 2006, pp. 66–110

    Google Scholar 

  2. Rop O., Mlcek J., Reznicek V., Mineral elements in fruits interspecific hybrids crane [Mineralni prvky v plodech mezidruhovych krizencu jerabu], Zahradnictvi, 2011, 52, 15–17

    Google Scholar 

  3. Hricovsky I., Small fruit [Drobne ovoce], Priroda, Bratislava, Slovak Republic, 2002, pp. 73–74

    Google Scholar 

  4. Kyzlink V., Principles of Food Preservation, Elsevier, Amsterdam, Netherlands, 1990, pp. 46–51

    Google Scholar 

  5. Berna E., Kampuse S., Dukalska L., Murniece I., The chemical and physical properties of sweet rowanberries in powder sugar. Foodbalt-2011, Conference Proceedings, 6th Baltic Conference on Food Science and Technology “Innovations for Food Science and Production“, Jelgava, Latvia, May 5–6, 2011, 163–168

    Google Scholar 

  6. Kutina J., Pomologic atlas [Pomologicky atlas], Brazda, Prague, Czech Republic, 1991, pp. 282–283

    Google Scholar 

  7. Janick J., Paull R.E., The Encyclopedia of Fruit and Nuts, CAB International, Cambridge, MA, USA, 2008, 320 p

    Google Scholar 

  8. Kampuss K., Kampuse S., Berna E., Kruma Z., Krasnova I., et al., Biochemical composition and antiradical activity of rowanberry (Sorbus L.) cultivars and hybrids with different Rosaceae L. cultivars, Latvian Journal of Agronomy, 2008, 1, 59–65.

    Google Scholar 

  9. Hukkanen A.T., Polonen S.S., Karenlampi S.O., Kokko H.I., Antioxidant capacity and phenolic content of sweet rowanberries, J. Agric. Food Chem., 2006, 54, 112–119

    Article  CAS  PubMed  Google Scholar 

  10. Gil-Izquerdo A., Mellethin A., Identification and quantifitation of flavonols in rowanberry (Sorbus aucuparia L.) juice, Eur. Food Res. Technol., 2001, 213, 12–17

    Article  Google Scholar 

  11. Aruoma O.I., Nutrition and health aspects of free radicals and antioxidants, Food Chem. Toxicol., 1994, 62, 671–683

    Article  Google Scholar 

  12. Jomova K., Valko M., Advancases in metal-induced oxidative stress and human disease, Toxicology, 2011, 283, 65–87

    Article  CAS  PubMed  Google Scholar 

  13. Velisek J., Chemie potravin, OSSIS, Tabor, Czech Republic, 2002, pp. 216–220

    Google Scholar 

  14. Barros L., Falcao S., Baptista P., Freire C., Vilas-Boas M., Ferreira I.C.F.R., Antioxidant activity of Agaricus spp. mushrooms by chemical, biochemical and electrochemical assays, Food Chem., 2008, 111, 61–66

    Article  CAS  Google Scholar 

  15. Wang Z., Hsu Ch., Yin M., Antioxidative characteristics of aqueous and ethanol extracts of glossy privat fruit, Food Chem., 2009, 112, 914–918

    Article  CAS  Google Scholar 

  16. Kylli P., Nohynek L., Puupponen-Pimiä, R., Westerlund-Wikström B., McDougall G., Stewart D, et al., Rowanberry phenolics: Compositional analysis and bioactives, J. Agric. Food Chem., 2010, 58, 11985–11992

    Article  CAS  PubMed  Google Scholar 

  17. Anonymous, UKZUZ — Data from Central Institute for Supervising and Testing in Agriculture, UKZUZ, Brno, Czech Republic, 2008

  18. Barros L., Baptista, P., Ferreira I.C.F.R., Effect of Lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays, Food Chem. Toxicol., 2007, 45, 1731–1737

    Article  CAS  PubMed  Google Scholar 

  19. Kim D.O., Neony S.W., Lee C.Y., Antioxidant capacity of phenolic phytochemicals from various cultivars of plums, Food Chem., 2003, 51, 321–326

    Article  Google Scholar 

  20. Thaipong K., Boonprakob U., Crosby K., Cisneros-Zevallos L., Byrne D.H., Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts, J. Food Compos. Anal., 2006, 19, 669–675

    Article  CAS  Google Scholar 

  21. Rupasinghe V.H.P., Jayasankar S., Lay W., Variation in total phenolic and antioxidant capacity among European plum genotypes, Sci. Hortic., 2006, 108, 243–246

    Article  CAS  Google Scholar 

  22. Singleton V.L., Orthofer R., Lamuela-Raventos R.M., Analysis of total phenols and other oxidation substrates and antioxidants by Folin-Ciocalteu reagent, Method. Enzymol., 1999, 299, 152–178

    Article  CAS  Google Scholar 

  23. Miki N., High-performance liquid-chromatographic determination of ascorbic acid in tomato products, J. Jpn. Soc. Food Sci., 1981, 28, 264–268

    CAS  Google Scholar 

  24. Ghiselli A., Nardini M., Baldi A., Scaccini C., Antioxidant activity of different phenolic fractions separated from an Italian red wine, J. Agr. Food Chem., 1998, 46, 361–367.

    Article  CAS  Google Scholar 

  25. Beissenhirtz M.K., Kwan R.C., Ko K.M., Renneberg R., Schiller F.W., Liskat F., Comparing an in vitro electrochemical measurement of superoxide scavenging activity with an in vivo assessment of antioxidant potential in Chinese tonifying herbs, Phytother. Res., 2004, 18, 149–153

    Article  PubMed  Google Scholar 

  26. Green L.C., Wagner D.A., Glogowski J., Skipper P.L., Wishnok, J.S., Tannenbaum, S.R., Analysis of nitrate, nitrite, and [15N]_nitrate in biological fluids, Anal. Biochem., 1982, 126, 131–138

    Article  CAS  PubMed  Google Scholar 

  27. Anup S., Shereen R.H., Shivanandappa T., Antioxidant activity of the roots of Decalepis hamiltonii, LWT-Food Sci. Technol., 2006, 36, 1059–1065

    Google Scholar 

  28. Rop O., Mlcek J., Jurikova T., Valsikova M., Antioxidant properties of interspecific crosses of rowan (Sorbus L.). Sborník z mezinárodní vědecké konference „Horticulture Nitra 2012“, SPU Nitra, 13.–14. 11. 2012, s. 193–197

    Google Scholar 

  29. Mikulic-Petkovsek M., Slatnar A., Stampar F., Veberic R., HPLC-MSn identification and quantification of flavonol glycosides in 28 wild and cultivated berry species, Food Chem. 2012, 135, 2138–2146

    Article  CAS  PubMed  Google Scholar 

  30. Bravo L., Polyphenols: chemistry, dietary sources, metabolim, and nutritional signifikace, Nutr. Rev., 1998, 56, 317–333

    Article  CAS  PubMed  Google Scholar 

  31. Dixon R.A., Paiva N.L., Stress induced phenylpropanoid metabolism, Plant Cell, 1995, 7, 1085–1097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Häkkinen S.H., Kärenlampi S.O., Heinonen I.M., Mykkänen H.M., Törrönen A.R., HPLC method for screening of flavonoids and phenolic acids in berries, J. Sci. Food Agr., 1998, 77, 543–551

    Article  Google Scholar 

  33. Heinonen I.M., Meyer A.S., Frankel E.N., Antioxidant activity of berry phenolics on human low-density lipoprotein nad liposome oxidation, J. Agric. Food Chem., 1998, 46, 4107–4112

    Article  CAS  Google Scholar 

  34. Häkkinen S.H., Kärenlampi S.O., Heinonen I.M., Mykkänen H.M., Törrönen A.R., Content of flavonols quercetin, myrycetin and kaempferol in 25 edible berries, J. Agric. Food Chem., 1999, 47, 2274–2279

    Article  PubMed  Google Scholar 

  35. Mattila P., Hellström J., Törrönen R., Phenolic acids in berries, fruits, and beverages, J. Agric. Food Chem., 2006, 54, 7193–7199

    Article  CAS  PubMed  Google Scholar 

  36. Jurikova T., Sochor J., Rop O., Mlcek J., Balla S., Szekeres L., et al., Polyphenolic Profile and Biological Activity of Chinese Hawthorn (Crataegus pinnatifida BUNGE) Fruits, Molecules, 2012, 17, 14490–14509

    Article  CAS  PubMed  Google Scholar 

  37. Rop O., Reznicek V., Mlcek J., Jurikova T., Sochor J., Kizek R., et al., Nutritional values of new Czech cultivars of Saskatoon berries (Amelanchier alnifolia Nutt.), Hort. Sci., 2012, 39, 123–128

    CAS  Google Scholar 

  38. Rop O., Sochor J., Jurikova T., Zitka O., Skutkova H., Mlcek J., Salas P., Krska B., Babula P., Adam V., Kramarova D., Beklova M., Provaznik I., Kizek R. Effect of Five Different Stages of Ripening on Chemical Compounds in Medlar (Mespilus germanica L.), Molecules, 2011, 16, 74–91

    Article  CAS  Google Scholar 

  39. Kovacikova E., Vojtassakova A., Holcikova K., Simonova E., Food table, [Potravinove tabulky]_NOI-UVTIP, Bratislava, Slovak Republic, 1997, pp. 89–90

    Google Scholar 

  40. Rop O., Jurikova T., Mlcek J., Kramarova D., Zultsetseg S., Antioxidant activity and selected nutritional values of plums (Prunus domestica L.) typical of the White Carpathian Mountains, Sci. Hortic-Amsterdam, 2009, 122, 545–549

    Article  CAS  Google Scholar 

  41. Määttä-Riihinen K.R., Kamal-Eldin A., Mattila P.H., Gonzales-Paramas A.M., Törrönen A.R., Distribution and contents of phenolic compounds in eighteen Scandinavian berry species, J. Agric. Food Chem., 2004, 52, 4477–4486

    Article  PubMed  Google Scholar 

  42. Samec D., Salopek I., Salopek-Sondi B., Piljac Žegarac J., Grafting black chokeberry (Aronia melanocarpa L., var. Viking) onto European rowan (Sorbus aucuparia L.) yields fruit with superior phytochemical content and bioactivity In: International Symposium of Biotech Students-Book of AbstractsZagreb: Students’ Association of Biotechnology Helix, 2009, 31–32

    Google Scholar 

  43. Sabir S.M., Maqsood H., Hayat M., Khan M.Q., Khaliq A., Elemental and nutritional analysis of sea buckthorn (Hippophae rhamnoides ssp. turkestanica) berries of Pakistani origin, J. Med. Food, 2005, 8, 518–522

    Article  CAS  PubMed  Google Scholar 

  44. Rop O., Řezníček V., Mlček J., Juríková T., Balík J., Sochor J., et al., Antioxidant and radical oxygen species scavenging activities of 12 cultivars of blue honeysuckle fruit, Hort. Sci., 2011, 38, 63–70

    Google Scholar 

  45. Jurikova T., Sochor J., Rop O., Mlcek J., Balla S., Szekeres L., et al., Evaluation of polyphenolic profile and nutritional value of non-traditional fruit species in the Czech Republic — a comparative study, Molecules, 2012, 17, 8968–8981

    Article  CAS  PubMed  Google Scholar 

  46. Perino-Issartier S., Zill-e-Huma, Abert-Vian M., Chemat F., Solvent free microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae rhamnoides) food by-products, Food Bioprocess Tech., 2011, 4, 1020–1028

    Article  CAS  Google Scholar 

  47. Tiitinen K.M., Yang B.R., Haraldsson G.G., Jonsdottir S., Kallio H.P., Fast analysis of sugars, fruit acids, and vitamin C in sea buckthorn (Hippophae rhamnoides L.) varieties, J. Agr. Food Chem., 2006, 54, 2508–2513

    Article  CAS  Google Scholar 

  48. Rop O., Mlcek J., Jurikova T., Valsikova M., Bioactive content and antioxidant capacity of Cape gooseberry fruit, Cent. Eur. J. Biol., 2012, 7, 672–679

    Article  CAS  Google Scholar 

  49. Rop O., Posolda M., Mlcek J., Reznicek V., Sochor J., Adam V., Kizek R., Sumczynski D., Qualities of Native Apple Cultivar Juices Characteristic of Central Europe, Not. Bot. Horti Agrobo., 2012, 40, 222–228

    CAS  Google Scholar 

  50. Bae S.H., Suh H.J., Antioxidant activities of five different mulberry cultivars in Korea, LWT-Food Sci. Technol., 2007, 40, 955–962

    Article  CAS  Google Scholar 

  51. Maffei F., Tarozzi A., Karbone F., Marchesi A., Hrelia S., Angeloni C., et al., Relevance of apple consumption for protection against oxidative damage induced by hydrogen peroxide in human lymphocytes, Brit. J. Nutr., 2007, 97, 921–927

    Article  CAS  PubMed  Google Scholar 

  52. Rop O., Jurikova T., Sochor J., Mlcek J., Kramarova D., Antioxidant capacity, scavenging radical activity and selected chemical composition of native apple cultivars from Central Europe, J. Food Quality, 2011, 34, 187–194

    Article  CAS  Google Scholar 

  53. Kähkönen M.P., Hopia A.I., Heinonen M., Berry phenolics and their antioxidant activity, J. Agr. Food Chem., 2001, 49, 4076–4082

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Mlcek.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mlcek, J., Rop, O., Jurikova, T. et al. Bioactive compounds in sweet rowanberry fruits of interspecific Rowan crosses. cent.eur.j.biol. 9, 1078–1086 (2014). https://doi.org/10.2478/s11535-014-0336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s11535-014-0336-8

Keywords

Navigation