Skip to main content
Log in

A parallel algorithm for the Riesz fractional reaction-diffusion equation with explicit finite difference method

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

The fractional reaction-diffusion equations play an important role in dynamical systems. Indeed, it is time consuming to numerically solve differential fractional diffusion equations. In this paper, we present a parallel algorithm for the Riesz space fractional diffusion equation. The parallel algorithm, which is implemented with MPI parallel programming model, consists of three procedures: preprocessing, parallel solver and postprocessing. The parallel solver involves the parallel matrix vector multiplication and vector vector addition. As to the authors’ knowledge, this is the first parallel algorithm for the Riesz space fractional reaction-diffusion equation. The experimental results show that the parallel algorithm is as accurate as the serial algorithm. The parallel algorithm on single Intel Xeon X5540 CPU runs 3.3-3.4 times faster than the serial algorithm on single CPU core. The parallel efficiency of 64 processes is up to 79.39% compared with 8 processes on a distributed memory cluster system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. K. Ananth Grama, Anshul Gupta, V. Kumar, Introduction to Parallel Computing. 2nd Ed., Addison-Wesley (2003).

    Google Scholar 

  2. K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, et al., A view of the parallel computing landscape. Communications of the ACM 52 (2009), 56–67.

    Article  Google Scholar 

  3. K. Burrage, N. Hale, D. Kay, An efficient implicit FEM scheme for fractional-in-space reaction-diffusion equations. SIAM J. on Scientific Computing 34 (2012), 2145–2172.

    Article  MathSciNet  Google Scholar 

  4. B. Catanzaro, N. Sundaram, K. Keutzer, Fast support vector machine training and classification on graphics processors. In: Proc. 25th Internat. Conf. on Machine Learning ACM (2008), 104–111.

    Google Scholar 

  5. J. Chen, F. Liu, Analysis of stability and convergence of numerical approximation for the Riesz fractional reaction-dispersion equation (in Chinese). J. of Xiamen University (Natural Science) 45 (2006), 466–469.

    MATH  Google Scholar 

  6. J. Chen, F. Liu, Stability and convergence of an implicit difference approximation for the space Riesz fractional reaction-dispersion equation. Numerical Mathematics, A Journal of Chinese Universities (EN Ser.) 16 (2007), 253.

    MATH  Google Scholar 

  7. J. Chen, F. Liu, I. Turner, V. Anh, The fundamental and numerical solutions of the Riesz space fractional reaction-dispersion equation. ANZIAM J. 50 (2008), 45–57.

    Article  MathSciNet  MATH  Google Scholar 

  8. G. Colomer, R. Borrell, F. Trias, I. Rodrguez, Parallel algorithms for sn transport sweeps. J. of Computational Physics 232 (2012), 118–135.

    Article  Google Scholar 

  9. C. Dhaigude, V. Nikam, Solution of fractional partial differential equations using iterative method. Fract. Calc. Appl. Anal. 15, No 4 (2012), 684–699; DOI: 10.2478/s13540-012-0046-8; at http://link.springer.com/journal/13540.

    MathSciNet  Google Scholar 

  10. K. Diethelm, An efficient parallel algorithm for the numerical solution of fractional differential equations. Fract. Calc. Appl. Anal. 14, No 3 (2011), 475–490; DOI: 10.2478/s13540-011-0029-1; at http://link.springer.com/journal/13540.

    MathSciNet  Google Scholar 

  11. N. Ford, J. Xiao, Y. Yan, A finite element method for time fractional partial differential equations. Fract. Calc. Appl. Anal. 14, No 3 (2011), 454–474; DOI: 10.2478/s13540-011-0028-2; at http://link.springer.com/journal/13540.

    MathSciNet  Google Scholar 

  12. G. hua Gao, Z. zhong Sun, Y. nan Zhang, A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions. J. of Computational Physics 231 (2012), 2865–2879.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Gong, J. Liu, L. Chi, H. Huang, J. Fang, Z. Gong, GPU accelerated simulations of 3D deterministic particle transport using discrete ordinates method. J. of Computational Physics 230 (2011), 6010–6022.

    Article  MATH  Google Scholar 

  14. C. Gong, J. Liu, H. Huang, Z. Gong, Particle transport with unstructured grid on GPU. Computer Physics Communications 183 (2012), 588–593.

    Article  Google Scholar 

  15. R. Gorenflo, F. Mainardi, Approximation of lévy-feller diffusion by random walk. J. for Analysis and its Applications 18 (1999), 231–246.

    MathSciNet  MATH  Google Scholar 

  16. H. Hejazi, T. Moroney, F. Liu, A finite volume method for solving the two-sided time-space fractional advection-dispersion equation. In: Proc. FDA’12 — 5th Symposium on Fractional Differentiation and Its Applications, Hohai University, 2012.

    Google Scholar 

  17. J. T. Katsikadelis, The BEM for numerical solution of partial fractional differential equations. Comput. Math. Appl. 62 (2011), 891–901.

    Article  MathSciNet  MATH  Google Scholar 

  18. D. J. Kerbyson, M. Lang, S. Pakin, Adapting wave-front algorithms to efficiently utilize systems with deep communication hierarchies. Parallel Computing 37 (2011), 550–561.

    Article  MathSciNet  Google Scholar 

  19. M. Köpf, C. Corinth, O. Haferkamp, T. Nonnenmacher, Anomalous diffusion of water in biological tissues. Biophysical Journal 70 (1996), 2950–2958.

    Article  Google Scholar 

  20. C. Li, F. Zeng, F. Liu, Spectral approximations to the fractional integral and derivative. Fract. Calc. Appl. Anal. 15, No 3 (2012), 383–406; DOI: 10.2478/s13540-012-0028-x; at http://link.springer.com/journal/13540.

    MathSciNet  Google Scholar 

  21. J. Lima, R. C. de Souza, The fractional Fourier transform over finite fields. Signal Processing 92 (2012), 465–476.

    Article  Google Scholar 

  22. S. Lu, F. Molz, G. Fix, Possible problems of scale dependency in applications of the three-dimensional fractional advection-dispersion equation to natural porous media. Water Resour. Res. 38 (2002), 1165.

    Google Scholar 

  23. M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection-dispersion flow equations. J. of Computational and Applied Mathematics 172 (2004), 65–77.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Meerschaert, C. Tadjeran, Finite difference approximations for twosided space-fractional partial differential equations. Applied Numerical Mathematics 56 (2006), 80–90.

    Article  MathSciNet  MATH  Google Scholar 

  25. K. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley & Sons, New York (1993).

    MATH  Google Scholar 

  26. Y. nan Zhang, Z. zhong Sun, Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation. J. of Computational Physics 230 (2011), 8713–8728.

    Article  MATH  Google Scholar 

  27. N. Ozdemir, D. Avci, B. Iskender, The numerical solutions of a two-dimensional space-time Riesz-Caputo fractional diffusion equation. Intern. J. of Optimization and Control: Theories & Applications (IJOCTA) 1, (2011), 17–26.

    Article  Google Scholar 

  28. H.-K. Pang, H.-W. Sun, Multigrid method for fractional diffusion equations. J. of Computational Physics 231 (2012), 693–703.

    Article  MathSciNet  MATH  Google Scholar 

  29. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, CA (1999).

    MATH  Google Scholar 

  30. S. Samko, A. Kilbas, O. Maričev, Fractional Integrals and Derivatives, Gordon and Breach Science Publ., Yverdon (1993).

    MATH  Google Scholar 

  31. M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, S. Huss-Lederman, MPI: The Complete Reference, MIT Press, Cambridge, MA — USA (1995).

    Google Scholar 

  32. C. Tadjeran, M. M. Meerschaert, H.-P. Scheffler, A second-order accurate numerical approximation for the fractional diffusion equation. J. of Computational Physics 213 (2006), 205–213.

    Article  MathSciNet  MATH  Google Scholar 

  33. Y. Xu, Z. He, The short memory principle for solving abel differential equation of fractional order. Computers & Mathematics with Applications 62 (2011), 4796–4805.

    Article  MathSciNet  MATH  Google Scholar 

  34. S. B. Yuste, J. Quintana-Murillo, A finite difference method with nonuniform timesteps for fractional diffusion equations. Computer Physics Communications 183 (2012), 2594–2600.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunye Gong.

About this article

Cite this article

Gong, C., Bao, W. & Tang, G. A parallel algorithm for the Riesz fractional reaction-diffusion equation with explicit finite difference method. fcaa 16, 654–669 (2013). https://doi.org/10.2478/s13540-013-0041-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-013-0041-8

MSC 2010

Key Words and Phrases

Navigation