Skip to main content
Log in

Safety of Selegiline (Deprenyl) in the Treatment of Parkinson’s Disease

  • Review Article
  • Drug Experience
  • Published:
Drug Safety Aims and scope Submit manuscript

Abstract

Selegiline (deprenyl), a selective, irreversible inhibitor of monoamine oxidase type B (MAO-B) is widely used in the treatment of Parkinson’s disease. As the first MAO-B inhibitor approved for the treatment of Parkinson’s disease, concerns were raised about the safety of the drug based on the adverse effect profiles of older, nonselective MAO inhibitors. Unlike the nonselective MAO inhibitors, selegiline does not significantly potentiate tyramine-induced hypertension (the ‘cheese effect’) at the dosages (5 to 10mg daily) used for the treatment of Parkinson’s disease. Selegiline has been well tolerated when given alone. The most frequent adverse events seen during monotherapy have been insomnia, nausea, benign cardiac arrhythmias, dizziness and headache. When combined with levo-dopa, selegiline can potentiate the typical adverse effects of levodopa, if the dose of levodopa is not reduced sufficiently. Thus, the most common adverse effects associated with this combination are nausea, dizziness, fatigue, constipation and insomnia. At the later stages of Parkinson’s disease when fluctuations in disability occur, peak dose dyskinesias, psychiatric complications like hallucinations and insomnia, and orthostatic hypotension are further potentiated by selegiline. Mortality was recently reported to be increased when selegiline and levodopa were given together in comparison with treatment with levodopa alone, but a large meta-analysis of 5 long term studies and 4 separate studies did not support this conclusion. Selegiline seems to be generally well tolerated in combination with other drugs. However, when pethidine (meperidine) has been given to patients who are receiving selegiline therapy, severe adverse effects have been reported. Thus, the concomitant use of these drugs is not recommended. A low tyramine diet is recommended if selegiline is used together with nonselective MAO inhibitors or the selective, reversible MAO-A inhibitor, moclobemide. Several adverse effects have been reported when fluoxetine and selegiline have been used together. A recent survey revealed that the incidence of a true serotonin syndrome is, however, very low with this combination. Concomitant use of selegiline and other selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitors (SSRIs) like citalopram, which have generally less interactions than fluoxetine, seems to be well tolerated. Nevertheless, caution is advised when combining a SSRI or a tricyclic antidepressant and selegiline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lees AJ, Parkinson’s Disease Research Group of the United Kingdom. Comparison of therapeutic effects and mortality data of levodopa and levodopa combined with selegiline in patients with early, mild Parkinson’s disease. BMJ 1995; 311: 1602–7

    Article  PubMed  CAS  Google Scholar 

  2. Ben-Shlomo Y, Churchyard A, Head J, et al. Investigation by Parkinson’s Disease Research Group of United Kingdom into excess mortality seen with combined levodopa and selegiline treatment in patients with early, mild Parkinson’s disease: further results of randomised trial and confidential inquiry. BMJ 1998; 316: 1191–6

    Article  PubMed  CAS  Google Scholar 

  3. Heikkila RE, Manzino L, Cabbat FS, et al. Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 1984; 311: 467–9

    Article  PubMed  CAS  Google Scholar 

  4. Cohen G, Pasik P, Cohen B, et al. Pargyline and deprenyl prevent the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in monkeys. Eur J Pharmacol 1985; 106: 209–10

    Article  Google Scholar 

  5. Mally J. Some new aspects of the effect of (—)deprenyl in Parkinson’s disease, a retrospective study. J Neural Transm 1992; 4: 155–64

    Article  CAS  Google Scholar 

  6. Tetrad JW, Langsten JW. The effect of deprenyl (selegiline) on the natural history of Parkinson’s disease. Science 1989; 245: 519–22

    Article  Google Scholar 

  7. The Parkinson Study Group. Effect of deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1989; 321: 1364–71

    Article  Google Scholar 

  8. The Parkinson Study Group. Effects of tocopherol and deprenyl on the progression of disability in early Parkinson’s disease. N Engl J Med 1993; 328: 176–83

    Article  Google Scholar 

  9. Myllylä VV, Sotaniemi KA, Vuorinen JA, et al. Selegiline as initial treatment in de novo parkinsonian patients. Neurology 1992; 42: 339–43

    Article  PubMed  Google Scholar 

  10. Pålhagen S, Swedish Parkinson Study Group. Selegiline as initial treatment of Parkinson’s disease — Swedish multicenter study [abstract]. Mov Disord 1997; 12: 142

    Google Scholar 

  11. Csanda E, Tárczy M. Selegiline in the early and late phases of Parkinson’s disease. J Neural Transm 1987; Suppl. 25: 105–13

    CAS  Google Scholar 

  12. Elizan TS, Yahr MD, Moros DA. Selegiline as an adjunct to conventional levodopa therapy in Parkinson’s disease. Arch Neurol 1989; 46: 1280–3

    Article  PubMed  CAS  Google Scholar 

  13. Poungvarin N, Viriyavejakul A. L-Deprenyl therapy in Thai patients with Parkinson’s disease: before and after, clinical trial of 50 patients. J Med Assoc Thai 1990; 73: 381–6

    PubMed  CAS  Google Scholar 

  14. Ziv I, Achiron A, Djaldetti R, et al. Short-term beneficial effect of deprenyl monotherapy in early Parkinson’s disease: a quantitative assessment. Clin Neuropharmacol 1993; 16: 54–60

    Article  PubMed  CAS  Google Scholar 

  15. Hassan M. Experience with selegiline in the treatment of de novo Parkinson’s disease. Todays Ther Trends 1993; 10: 203–14

    Google Scholar 

  16. The Italian Parkinson Study Group. A multicenter Italian randomised study on early treatment of Parkinson’s disease —retrospective study. Ital J Neurol Sci 1992; 13: 735–9

    Article  Google Scholar 

  17. Teräväinen H. Selegiline in Parkinson’s disease. Acta Neurol Scand 1990; 81: 333–6

    Article  PubMed  Google Scholar 

  18. Allain H, Courgnard J, Neukirch H-C, and the FSMT members. Selegiline in de novo parkinsonian patients: the French selegiline multicenter trial (FSMT). Acta Neurol Scand 1991; 84 Suppl. 136: 73–8

    Article  Google Scholar 

  19. Johnels B, Ingvarsson PE, Matousek M, et al. Optoelectronic movement analysis in Parkinson’s disease: effect of selegiline on the disability in de novo parkinsonian patients — a pilot study. Acta Neurol Scand 1991; 84: 40–3

    Article  Google Scholar 

  20. Mally J, Attila BK, Stone TW. Delayed development of symptomatic improvement by (−)-deprenyl in Parkinson’s disease. J Neurol Sci 1995; 134: 143–5

    Article  PubMed  CAS  Google Scholar 

  21. Myllylä VV, Sotaniemi KA, Tuominen J, et al. Selegiline as primary treatment in early phase Parkinson’s disease — an interim report. Acta Neurol Scand 1989; 126: 177–82

    Article  Google Scholar 

  22. Finnegan KT, Skratt JJ, Irwin I, et al. Protection against DSP-4-induced neurotoxicity by deprenyl is not related to its inhibition of MAO B. Eur J Pharmacol 1990; 184: 119–26

    Article  PubMed  CAS  Google Scholar 

  23. Salonen T, Haapalinna A, Heinonen E, et al. Monoamine oxidase B inhibitor selegiline protects young and aged rat peripheral sympathetic neurons against 6-hydroxydopamine-induced neurotoxicity. Acta Neuropathol 1996; 91: 466–74

    Article  PubMed  CAS  Google Scholar 

  24. Bronzetti E, Felici L, Ferrante F, et al. Effect of ethylcholine mustard aziridinium (AF64A) and of the monoamine oxidase-B-inhibitor L-deprenyl on the morphology of the rat hippocampus. Int J Tissue React 1992; XIV: 175–82

    Google Scholar 

  25. Salo PT, Tatton WG. Deprenyl reduces the death of motorneurons caused by axotomy. J Neurosci Res 1992; 31: 394–400

    Article  PubMed  CAS  Google Scholar 

  26. Tatton WG, Greenwood CE. Rescue of dying neurons: a new action for deprenyl in MPTP parkinsonism. J Neurosci Res 1991; 30: 666–72

    Article  PubMed  CAS  Google Scholar 

  27. Lahtinen H, Koistinaho J, Kauppinen R, et al. Selegiline treatment after transient global ischemia in gerbils enhances the survival of CA1 pyramidal cells in the hippocampus. Brain Res 1997; 757: 260–7

    Article  PubMed  CAS  Google Scholar 

  28. Tatton WG, Seniuk NA. ’Trophic-like’ actions of (−)-deprenyl on neurons and astroglia. Acad Biomed Drug Res 1994; 7: 238–48

    CAS  Google Scholar 

  29. Tatton WG, Ju WYL, Holland DP, et al. (−)-deprenyl reduces PC12 cell apoptosis by inducing new protein synthesis. J Neurochem 1994; 63: 1572–5

    Article  PubMed  CAS  Google Scholar 

  30. Knoll J. The pharmacology of selegiline ((−)-deprenyl). New aspects. Acta Neurol Scand 1989; 126: 83–91

    Article  CAS  Google Scholar 

  31. Carrillo M-C, Kanai S, Nokubo M, et al. (−)Deprenyl induces activities of both superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats. Life Sci 1991; 48: 517–21

    Article  PubMed  CAS  Google Scholar 

  32. Carrillo M-C, Ivy G, Milgram NW, et al. (−)Deprenyl increases activities of superoxide dismutase (SOD) in striatum of dog brain. Life Sci 1994; 54: 1483–9

    Article  PubMed  CAS  Google Scholar 

  33. Wiseman LR, McTavish D. Selegiline: a review of its clinical efficacy in Parkinson’s disease and its clinical potential in Alzheimer’s disease. CNS Drugs 1995; 4: 230–46

    Article  CAS  Google Scholar 

  34. Parkes JD. Adverse effects of antiparkinsonian drugs. Drugs 1981; 21: 341–53

    Article  PubMed  CAS  Google Scholar 

  35. The Parkinson Study Group. Effect of lazabemide on the progression of disability in early Parkinson’s disease. Ann Neurol 1996; 40: 99–107

    Article  Google Scholar 

  36. Lavie P, Wajsbort J, Youdim MBH. Deprenyl does not cause insomnia in parkinsonian patients. Commun Psychopharmacol 1980; 4: 303–7

    PubMed  CAS  Google Scholar 

  37. Nappi G, Martignoni E, Horowski R, et al. Lisuride plus selegiline in the treatment of early Parkinson’s disease. Acta Neurol Skand 1991; 83: 407–10

    Article  CAS  Google Scholar 

  38. Calzetti S, Negrotti A, Cassio A. L-deprenyl as an adjunct to low-dose bromocriptine in early Parkinson’s disease: a short-term, double-blind, and prospective follow-up study. Clin Neuropharmacol 1995; 18: 250–7

    Article  PubMed  CAS  Google Scholar 

  39. Myllylä VV, Sotaniemi K, Mäki-Ikola O, et al. Role of selegiline in combination therapy of Parkinson’s disease. Neurology 1996; 47: 200–9

    Article  Google Scholar 

  40. Myllylä VV, Sotaniemi KA, Hakulinen P, et al. Selegiline as the primary treatment of Parkinson’s disease — a long-term double-blind study. Acta Neurol Scand 1997; 95: 211–8

    Article  PubMed  Google Scholar 

  41. Larsen JP, Boas J, Group N-DS. The effects of early selegiline therapy on long-term levodopa treatment and parkinsonian disability: an interim analysis of a Norwegian-Danish 5-year study. Mov Disord 1997; 12: 175–82

    Article  PubMed  CAS  Google Scholar 

  42. Brannan T, Yahr MD. Comparative study of selegiline plus 1-dopa-carbidopa versus 1-dopa-carbidopa alone in the treatment of Parkinson’s disease. Ann Neurol 1995; 37: 95–8

    Article  PubMed  CAS  Google Scholar 

  43. Parkinson’s Disease Research Group in the United Kingdom. Comparisons of therapeutic effects of levodopa, levodopa and selegiline, and bromocriptine in patients with early, mild Parkinson’s disease: three year interim report. BMJ 1993; 307: 469–72

    Article  Google Scholar 

  44. Olanow CW, Hauser RA, Gauger L, et al. The effect of deprenyl and levodopa on the progression of Parkinson’s disease. Ann Neurol 1995; 38: 771–7

    Article  PubMed  CAS  Google Scholar 

  45. Menza MA, I. GL. Hypomania in a patient receiving deprenyl (selegiline) after adrenal-striatal implantation for Parkinson’s disease. Clin Neuropharmacol 1988; 11: 549–51

    Article  PubMed  CAS  Google Scholar 

  46. Boyson SJ. Psychiatric effects of selegiline [letter]. Arch Neurol 1991; 48: 902

    Article  PubMed  CAS  Google Scholar 

  47. Kurlan R, Dimitsopulos T. Selegiline and manic behavior in Parkinson’s disease [letter]. Arch Neurol 1992; 49: 1231

    Article  PubMed  CAS  Google Scholar 

  48. Turkka J, Suominen K, Tolonen U, et al. Selegiline diminishes cardiovascular autonomic responses in Parkinson’s disease. Neurology 1997; 48: 662–7

    Article  PubMed  CAS  Google Scholar 

  49. Meco G, Pratesi L, Bonifati V Cardiovascular reflexes and autonomic dysfunction in Parkinson’s disease. J Neurol 1991; 238: 195–9

    Article  PubMed  CAS  Google Scholar 

  50. Calne DB. Hypotension caused by L-dopa. BMJ 1970; 1: 474–5

    Article  PubMed  CAS  Google Scholar 

  51. Liebermann AN, Goldstein M. Bromocriptine in Parkinson’s disease. Pharmacol Rev 1985; 37: 217–27

    Google Scholar 

  52. Milon D, Allain H, Reymann JM, et al. Randomized double-blind trial of injectable heptaminol for controlling spontaneous or bromocriptine-induced orthostatic hypotension in parkinsonians. Fundam Clin Pharmacol 1990; 4: 695–705

    Article  PubMed  CAS  Google Scholar 

  53. Schoenberger JA. Drug-Induced orthostatic hypotension. Drug Saf 1991; 6: 402–7

    Article  PubMed  CAS  Google Scholar 

  54. Levy BF. Treatment of hypertension with pargyline hydrochloride. Cur Ther Res Clin Exp 1966; 8: 343–5

    CAS  Google Scholar 

  55. Presthus J, Hajba A. Deprenyl (selegiline) combined with levodopa and a decarboxylase inhibitor in the treatment of Parkinson’s disease. Acta Neurol Scand 1983; 68: 127–33

    Article  Google Scholar 

  56. Sivertsen B, Dupont E, Mikkelsen B, et al. Selegiline and levodopa in early or moderately advanced Parkinson’s disease: a double-blind controlled short- and long-term study. Acta Neurol Scand 1989; 80 Suppl. 126: 147–52

    Article  Google Scholar 

  57. Liebermann A, Gopinathan G, Neophytides A, et al. Deprenyl versus placebo in Parkinson’s disease: a double-blind study. NY State J Med 1987; 87: 646–9

    Google Scholar 

  58. Data on file, Orion Corporation, 1987

  59. Heinonen EH, Rinne UK, Tuominen J. Selegiline in the treatment of daily fluctuations in disability of parkinsonian patients with long-term levodopa treatment. Acta Neurol Scand 1989; 126: 113–8

    CAS  Google Scholar 

  60. Ulm G, Fornadi F. R-(−)-deprenyl in the treatment of end-of-dose-akinesia. J Neural Transm 1987; 25: 163–72

    CAS  Google Scholar 

  61. Yahr MD, Mendoza MR, Moros D, et al. Treatment of Parkinson’s disease in early and late phases. Use of pharmacological agents with special reference to deprenyl (selegiline). Acta Neurol Scand 1983; 68: 95–102

    Article  Google Scholar 

  62. Elizan TS, Moros DA, Yahr MD. Early combination of selegiline and low-dose levodopa as initial symptomatic therapy in Parkinson’s disease. Arch Neurol 1991; 48: 31–4

    Article  PubMed  CAS  Google Scholar 

  63. Waters CH. Side effects of selegiline (deprenyl). J Geriatr Psychiatry Neurol 1992; 5: 31–4

    PubMed  CAS  Google Scholar 

  64. Lees AJ, Kohout LJ, Shaw KM, et al. Deprenyl in Parkinson’s disease. Lancet 1977; II: 791–5

    Article  Google Scholar 

  65. Rinne UK, Siirtola T. L-deprenyl treatment of on-off phenomena in Parkinson’s disease. J Neural Transm 1978; 43: 253–62

    Article  PubMed  CAS  Google Scholar 

  66. Schachter M, Marsden CD, Parkes JD, et al. Deprenyl in the management of response fluctuation in patients with Parkinson’s disease on levodopa. J Neurol Neurosurg Psychiatry 1980; 43: 1016–21

    Article  PubMed  CAS  Google Scholar 

  67. Wajsbort J, Kartmazov K, Oppenheim B, et al. The clinical and biochemical investigation of L-deprenyl in Parkinson’s disease with special reference to the ‘on-off’ effect. J Neural Transm 1982; 55: 201–15

    Article  Google Scholar 

  68. Golbe II, Lieberman AN, Muenter MD, et al. Deprenyl in the treatment of symptom fluctuations in advanced Parkinson’s disease. Clin Neuropharmacol 1988; 11: 45–55

    Article  PubMed  CAS  Google Scholar 

  69. Golbe LI. Long-term efficacy and safety of deprenyl (selegiline) in advances Parkinson’s disease. Neurology 1989; 39: 1109–11

    Article  PubMed  CAS  Google Scholar 

  70. Rowland MJ, Bransome ED, Hendry LB. Hypoglycemia caused by selegiline, an antiparkinsonian drug: can such side effects be predicted? J Clin Pharmacol 1994; 34: 80–5

    PubMed  CAS  Google Scholar 

  71. Duarte J, Almuina JV, Sevillano MD, et al. Brief communication. Atrial fibrillation induced by selegiline. Parkinsonism Relat Disord 1996; 2: 125–6

    Article  PubMed  CAS  Google Scholar 

  72. Vermersch P, Petit H. Tolerance de 1a selegiline au long cours dans le traitement de 1a maladie de Parkinson. Therapie 1992; 47: 75–8

    PubMed  CAS  Google Scholar 

  73. Yoshida T, Yamada Y, Yamamoto T, et al. Metabolism of deprenyl, a selective monoamine oxidase (MAO) B inhibitor in rat: relationship of metabolism to MAO-B inhibitory potency. Xenobiotica 1986; 16: 129–36

    Article  PubMed  CAS  Google Scholar 

  74. Harris JE, Baldessarini RJ. Uptake of [3H]-catecholamines by homogenates of rat corpus striatum and cerebral cortex: effects of amphetamine analogues. Neuropharmacology 1973; 12: 669–79

    Article  PubMed  CAS  Google Scholar 

  75. Thornburg JE, Moore KE. Dopamine and norepinephrine uptake by rat brain synaptosomes: relative inhibitory potencies of 1- and d-amphetamine and amantadine. Res Commun Chem Pathol Pharmacol 1973; 5: 81–9

    PubMed  CAS  Google Scholar 

  76. Olanow CW, Myllylä VV, Sotaniemi KA, et al. Th effect of selegiline on mortality in patients with Parkinson’s disease: a meta-analysis. Neurology. In press

  77. Caraceni TA. Dopamine agonists and deprenyl in comparison to levodopa for initial treatment of Parkinson’s disease [abstract]. Mov Disord 1997; 12: 81

    Google Scholar 

  78. Di Rocco A, Culliton DA, Yahr MD. Comparative mortality and longevity in parkinsonian patients with L-Dopa alone or L-Dopa and selegiline [abstract]. Mov Disord 1006; 11: 708

    Google Scholar 

  79. Parkinson Study Group. Mortality in DATATOP: a multicenter trial in early Parkinson’s disase. Ann Neurol 1998; 43: 318–25

    Article  Google Scholar 

  80. Fuell DL, Kreider M, Gardiner D. The effect of selegiline on the efficacy and safety of ropinirole in early and adjunct therapy studies in Parkinson’s disease [abstract]. Mov Disord 1997; 12: 116

    Google Scholar 

  81. Birkmayer W, Knoll J, Riederer P, et al. Increased life expectancy resulting from addition of L-deprenyl to Madopar® treatment in Parkinson’s disease: a long-term study. J Neural Transm 1985; 64: 113–27

    Article  PubMed  CAS  Google Scholar 

  82. Churchyard A, Mathias CJ, Boonkongchuen P, et al. Autonomic effects of selegiline: possible cardiovascular toxicity in Parkinson’s disease. J Cereb Blood Flow Metab 1997; 63: 228–34

    CAS  Google Scholar 

  83. Boulton AA. The tyramines: functionally significant biogenic amines or metabolic accidents? Life Sci 1978; 23: 659–72

    Article  PubMed  CAS  Google Scholar 

  84. Da Prada M, Zürcher G, Wuthrich I, et al. On tyramine, food, beverages and the reversible MAO inhibitor moclobemide. J Neural Transm 1988; Suppl. 26: 31–56

    Google Scholar 

  85. Blackwell B. Hypertensive crises due to monoamine-oxidase inhibitors. Lancet 1963; II: 849–50

    Article  Google Scholar 

  86. Hunter KR, Boakes AJ, Laurence DR, et al. Monoamine oxidase inhibitors and L-dopa. BMJ 1970; 3: 388

    Article  PubMed  CAS  Google Scholar 

  87. Glover V, Pycock CJ, Sandler M. Tyramine-induced noradrenaline release from rat brain slices: prevention by (−)-deprenyl. Br J Pharmacol 1983; 80: 141–8

    Article  PubMed  CAS  Google Scholar 

  88. Elsworth JD, Glover V, Reynolds GP, et al. Deprenyl administration in man: a selective monoamine oxidase B inhibitor without the ‘cheese effect’. Psychopharmacology 1978; 57: 33–8

    Article  PubMed  CAS  Google Scholar 

  89. Stern GM, Lees AJ, Sandler M. Recent observations on the clinical pharmacology of (−)deprenyl. J Neural Transm 1978; 43: 245–51

    Article  PubMed  CAS  Google Scholar 

  90. Sunderland T, Mueller EA, Cohen RM, et al. Tyramine pressor sensitivity changes during deprenyl treatment. Psychopharmacology 1985; 86: 432–7

    Article  PubMed  CAS  Google Scholar 

  91. Korn A, Wagner B, Moritz E, et al. Tyramine pressor sensitivity in healthy subjects during combined treatment with moclobemide and selegiline. Eur J Clin Pharmacol 1996; 49: 273–8

    Article  PubMed  CAS  Google Scholar 

  92. Hublin M, Partinen M, Heinonen EH, et al. Selegiline in the treatment of narcolepsy. Neurology 1994; 44: 2095–101

    Article  PubMed  CAS  Google Scholar 

  93. Mann JJ, Aarons SF, Wilner PJ, et al. A controlled study of the antidepressant efficacy and side effects of (−)-deprenyl. Arch Gen Psychiatry 1989; 46: 45–50

    Article  PubMed  CAS  Google Scholar 

  94. Dingemanse J, Hussain Y, Korn A. Tyramine pharmacodynamics during combined administration of lazabemide and moclobemide. Int J Clin Pharmacol Ther 1996; 34: 172–7

    PubMed  CAS  Google Scholar 

  95. Pare CMB, Mousawi MA, Sandler M, et al. Attempts to attenuate the ‘cheese effect’. J Affect Disord 1985; 9: 137–41

    Article  PubMed  CAS  Google Scholar 

  96. Boden R, Botting R, Coulson P, et al. Effect of nonselective and selective inhibitors of monoamine oxidases A and B on pethidine toxicity in mice. Br J Pharmacol 1984; 82: 151–4

    Article  PubMed  CAS  Google Scholar 

  97. Jounela AJ, Mattila MJ, Knoll J. Interaction of selective inhibitors of monoamine oxidase with pethidine in rabbits. Biochem Pharmacol 1977; 26: 806–8

    Article  PubMed  CAS  Google Scholar 

  98. Zornberg GL, Bodkin JA, Cohen BM. Severe adverse interaction between pethidine and selegiline. Lancet 1991; 337: 246

    Article  PubMed  CAS  Google Scholar 

  99. Listing of adverse drug reactions, postmarketing surveillance. Orion Pharma Drug Safety. Turku (Finland): Orion Corporation, 1998

  100. Riederer P, Youdim MBH. Monoamine oxidase activity and monoamine metabolism in brains of parkinsonian patients treated with L-deprenyl. J Neurochem 1986; 46: 1359–65

    Article  PubMed  CAS  Google Scholar 

  101. Ciraulo DA, Shader RI. Fluoxetine drug-drug interactions I: antidepressants and antipsychotics. J Clin Psychopharmacol 1990; 10: 48–50

    Article  PubMed  CAS  Google Scholar 

  102. Messiha FS. Fluoxetine: adverse effects and drug-drug interactions. Clin Toxicol 1993; 31: 603–30

    Article  CAS  Google Scholar 

  103. Quinn DI, Day RO. Drug interactions of clinical importance: an updated guide. Drug Saf 1995; 12: 393–452

    Article  PubMed  CAS  Google Scholar 

  104. Suchowersky O, de Vries J. Possible interactions between deprenyl and prozac. J Neurol Sci 1990; 17: 352–3

    CAS  Google Scholar 

  105. Jermain DM, Hughes PL, Follender AB. Potential fluoxetine-selegiline interaction [letter]. Ann Pharmacother 1992; 26: 1300

    PubMed  CAS  Google Scholar 

  106. Montastruc JL, Chamontin B, Senard JM, et al. Pseudo-phaeochromocytoma in parkinsonian patient treated with fluoxetine plus selegiline [letter]. Lancet 1993; 341: 555

    Article  PubMed  CAS  Google Scholar 

  107. Toyama SC, Iacono RP. Is it safe to combine a selective serotonin reuptake inhibitor with selegiline. Ann Pharmacother 1994; 28: 405–6

    PubMed  CAS  Google Scholar 

  108. Waters CH. Fluoxetine and selegiline — lack of significant interaction. Can J Neurol Sci 1994; 21: 259–61

    PubMed  CAS  Google Scholar 

  109. Lefebvre H, Noblet C, Moore N, et al. Pseudo-phaeochromocytoma after multiple drug interactions involving the selective monoamine oxidase inhibitor selegiline. Clin Endocrinol 1995; 42: 95–9

    Article  CAS  Google Scholar 

  110. Sternbach H. The serotonin syndrome. Am J Psychiatry 1991; 148: 705–13

    PubMed  CAS  Google Scholar 

  111. Richard IH, Kurlan R, Tanner C, et al. Serotonin syndrome and the combined use of deprenyl and an antidepressant in Parkinson’s disease. Neurology 1997; 48: 1070–7

    Article  PubMed  CAS  Google Scholar 

  112. Sandy KR. L-dopa induced ’serotonin syndrome’ in a parkinsonian patient on bromocriptine. J Clin Psychopharmacol 1986; 6: 194–5

    Article  Google Scholar 

  113. Yu JL, Zweig RM. Successful combination of selegiline and antidepressants in Parkinson’s disease [abstract]. Neurology 1996; 46: A374

    Google Scholar 

  114. Riesenmann C. Antidepressant drug interactions and the cytochrome P450 system: a critical appraisal. Pharmacotherapy 1995; 15: 84S–99S

    Google Scholar 

  115. Jeppesen U, Gram LF, Vistisen K, et al. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by Citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol 1996; 51: 73–8

    Article  PubMed  CAS  Google Scholar 

  116. Laine K, Anttila M, Heinonen E, et al. Lack of interaction between concomitantly administered selegiline and Citalopram. Clin Neuropharm 1997; 20: 419–33

    Article  CAS  Google Scholar 

  117. Caley CF, Friedman HJ. Does fluoxetine exacerbate Parkinson’s disease. J Clin Psychiatry 1992; 53: 278–82

    PubMed  CAS  Google Scholar 

  118. Jansen Steur ENH. Increase of parkinson disability after fluoxetine medication. Neurology 1993; 43: 211–3

    Article  Google Scholar 

  119. Breteler MMB. Selegiline, or the problem of early termination of clinical trials. BMJ 1998; 316: 1182–3

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinonen, E., Myllylä, V. Safety of Selegiline (Deprenyl) in the Treatment of Parkinson’s Disease. Drug-Safety 19, 11–22 (1998). https://doi.org/10.2165/00002018-199819010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199819010-00002

Keywords

Navigation