Skip to main content

Advertisement

Log in

The potential of additively manufactured membranes for selective separation and capture of CO2

  • Prospective
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Additive manufacturing (or 3D printing) is an evolving technology that shows great potential as a sustainable method for fabricating gas separation membranes for carbon capture applications. Compared to other gas separation techniques or membranes fabricated by conventional formative methods, the use of 3D-printed membranes is more advantageous because of their simplicity, higher energy efficiency, practicality, flexible and tailorable designs, and high separation efficiency. Although polymeric, cementitious, and gel-based materials have been exploited for the development and fabrication of robust and highly efficient CO2-capturing membranes, these materials require further innovation to become fit and suitable as feedstock for 3D printers. In this work, we review several and potential membrane materials used for capturing CO2 and discuss their corresponding separation mechanisms and fabrication via 3D printing. We also summarize the challenges and limitations in using 3D-printed membranes and provide perspectives towards high-performance membrane fabrication and future industrial applications.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Reprinted from Refs. 22 and 40 with permission from Elsevier.

Figure 5

Reproduced from Ref. 24 with permission from Elsevier.

Figure 6
Figure 7

Reproduced from Ref. 92 with permission from Elsevier.

Figure 8

Reproduced from Ref. 104 with permission from Elsevier.

Similar content being viewed by others

References

  1. US Environmental Protection Agency, Indicators and concentrations and their impacts on human, https://www.epa.gov/report-environment/greenhouse-gases#:~:text=Major greenhouse gases include carbon,warming associated with human activities. Accessed 8 Mar 2021

  2. M. Fischedick, J. Roy, A. Abdel-Aziz, A. Acquaye, J. Allwood, J.-P. Ceron, Y. Geng, H. Kheshgi, A. Lanza, D. Perczyk, L. Price, E. Santalla, C. Sheinbaum, K. Tanaka, Chapter V. Industry. In: Climate Change 2014: Mitigation of Climate Change. Contri-bution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, New York, 2014)

  3. D.S. Pisupati, Products of combustion. https://www.e-education.psu.edu/egee102/node/1951. Accessed 15 Mar 2021

  4. Global Carbon Project: Data supplement to the Global Carbon Budget 2020 (Version 1.0). https://www.icos-cp.eu/science-and-impact/global-carbon-budget/2020. Accessed 15 Mar 2021

  5. M.M. Muñoz-Boado, E.B. Caldona, Gypsum-reinforced zeolite composite for particulate matter reduction from vehicular emissions. J. Environ. Chem. Eng. 5, 2631 (2017)

    Article  CAS  Google Scholar 

  6. J.Z. Duran, E.B. Caldona, Design of an activated carbon equipped-cyclone separator and its performance on particulate matter removal. Part. Sci. Technol. 38, 694 (2020)

    Article  CAS  Google Scholar 

  7. R.G. Prinn, J. Reilly, M. Sarofim, C. Wang, B. Felzer, Effects of air pollution control on climate (2005), p. 1–14

  8. K. Halada, K. Ijima, K. Yagi, Estimation of the emissions of CO2, SOx, and NOx of steel alloys. J. Mater. Res. 13, 2514 (1987)

    Article  Google Scholar 

  9. G. Xu, F. Liang, Y. Yang, Y. Hu, K. Zhang, W. Liu, An improved CO2 separation and purification system based on cryogenic separation and distillation theory. Energies 7, 3484 (2014)

    Article  CAS  Google Scholar 

  10. D.Y.C. Leung, G. Caramanna, M.M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies. Renew. Sustain. Energy Rev. 39, 426 (2014)

    Article  CAS  Google Scholar 

  11. Z.Y. Yeo, T.L. Chew, P.W. Zhu, A.R. Mohamed, S.P. Chai, Conventional processes and membrane technology for carbon dioxide removal from natural gas: a review. J. Nat. Gas Chem. 21, 282 (2012)

    Article  CAS  Google Scholar 

  12. L. Baxter, A. Baxter, S. Burt, Cryogenic CO2 capture as a cost-effective CO2 capture process (2009)

  13. M. Songolzadeh, M. Soleimani, M. Takht Ravanchi, R. Songolzadeh, Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions. Sci. World J. (2014). https://doi.org/10.1155/2014/828131

    Article  Google Scholar 

  14. J. Mustafa, M. Farhan, M. Hussain, CO2 separation from flue gases using different types of membranes. J. Membr. Sci. Technol. 6 (2016)

  15. C.A. Scholes, G.W. Stevens, S.E. Kentish, Membrane gas separation applications in natural gas processing. Fuel 96, 15 (2012)

    Article  CAS  Google Scholar 

  16. T.C. Merkel, H. Lin, X. Wei, R. Baker, Power plant post-combustion carbon dioxide capture: An opportunity for membranes. J. Membr. Sci. 359, 126 (2010)

    Article  CAS  Google Scholar 

  17. A.D. Ebner, J.A. Ritter, State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Sep. Sci. Technol. 44, 1273 (2009)

    Article  CAS  Google Scholar 

  18. Y. Alqaheem, A. Alomair, M. Vinoba, A. Pérez, Polymeric gas-separation membranes for petroleum refining. Int. J. Polym. Sci. 2017, 1 (2017)

    Article  CAS  Google Scholar 

  19. Y. Han, W.S.W. Ho, Recent advances in polymeric membranes for CO2 capture. Chin. J. Chem. Eng. 26, 2238 (2018)

    Article  CAS  Google Scholar 

  20. S. Li, Z. Wang, C. Zhang, M. Wang, F. Yuan, J. Wang, S. Wang, Interfacially polymerized thin film composite membranes containing ethylene oxide groups for CO2 separation. J. Membr. Sci. 436, 121 (2013)

    Article  CAS  Google Scholar 

  21. C.E. Powell, G.G. Qiao, Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. J. Membr. Sci. 279, 1 (2006)

    Article  CAS  Google Scholar 

  22. M.A. Aroon, A.F. Ismail, Performance studies of mixed matrix membranes for gas separation: a review. Sep. Purif. Technol. 75, 229 (2010)

    Article  CAS  Google Scholar 

  23. Y. Wu, D. Zhao, S. Chen, J. Ren, K. Hua, H. Li, M. Deng, The effect of structure change from polymeric membrane to gel membrane on CO2 separation performance. Sep. Purif. Technol. 261, (2021)

    Article  CAS  Google Scholar 

  24. Y.F. Lin, C.R. Syu, K.W. Huang, K.Y.A. Lin, Synthesis of silica aerogel membranes using low-cost silicate precursors for carbon dioxide capture. Chem. Phys. Lett. 726, 13 (2019)

    Article  CAS  Google Scholar 

  25. L. Keshavarz, M.R. Ghaani, J.M.D. MacElroy, N.J. English, A comprehensive review on the application of aerogels in CO2-adsorption: materials and characterisation. Chem. Eng. J. 412, 128604 (2021)

    Article  CAS  Google Scholar 

  26. H. Thakkar, S. Lawson, A.A. Rownaghi, F. Rezaei, Development of 3D-printed polymer-zeolite composite monoliths for gas separation. Chem. Eng. J. 348, 109 (2018)

    Article  CAS  Google Scholar 

  27. Z. Dong, H. Cui, H. Zhang, F. Wang, X. Zhan, M. Wegener, P.A. Levkin, F. Mayer, B. Nestler, Polymerization-induced phase separation. Nat. Commun. 12, 1 (2021)

    Article  CAS  Google Scholar 

  28. K. Hunger, N. Schmeling, H.B.T. Jeazet, C. Janiak, Investigation of cross-linked and additive containing polymer materials for membranes with improved performance in pervaporation and gas separation. Membranes 2, 727 (2012)

    Article  CAS  Google Scholar 

  29. I. Hossain, A.Z. Al Munsur, T.H. Kim, A facile synthesis of (PIM-polyimide)-(6FDA-durene-polyimide) copolymer as novel polymer membranes for CO2 separation. Membranes (2019). https://doi.org/10.3390/membranes9090113

    Article  Google Scholar 

  30. A.C. de Leon, I.G.M. da Silva, K.D. Pangilinan, Q. Chen, E.B. Caldona, R.C. Advincula, High performance polymers for oil and gas applications. React. Funct. Polym. (2021). https://doi.org/10.1016/j.reactfunctpolym.2021.104878

    Article  Google Scholar 

  31. A.M. Bazzanella, S. Luhr, S. Schiebahn, L. Zhao, Ullmann’s Encyclopedia of Industrial Chemistry. Heterogeneous Catalysis and Solid Catalysts 1. Fundamentals (2014)

  32. J.G. Vitillo, B. Smit, L. Gagliardi, Introduction: carbon capture and separation. Chem. Rev. 117, 9521 (2017)

    Article  CAS  Google Scholar 

  33. G. Ji, M. Zhao, Membrane Separation Technology in Carbon Capture. IntechOpen. 59 (2017)

  34. A. Ismail, A. Mustafa, T.D. Kusworo, H. Hasbullah, Understanding the solution-diffusion mechanism in gas separation membrane for engineering students (2005)

  35. D.E. Gottschlich, D.L. Roberts, J.D. Way, A theoretical comparison of facilitated transport and solution-diffusion membrane modules for gas separation. Gas Sep. Purif. 2, 65 (1988)

    Article  Google Scholar 

  36. L.M. Robeson, The upper bound revisited. J. Membr. Sci. 320, 390 (2008)

    Article  CAS  Google Scholar 

  37. L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62, 165 (1991)

    Article  CAS  Google Scholar 

  38. R. Rea, M.G. De Angelis, M.G. Baschetti, Models for facilitated transport membranes: a review. Membranes 9, 1 (2019)

    Article  CAS  Google Scholar 

  39. Z.X. Low, Y.T. Chua, B.M. Ray, D. Mattia, I.S. Metcalfe, D.A. Patterson, Perspective on 3D printing of separation membranes and comparison to related unconventional fabrication techniques. J. Membr. Sci. 523, 596 (2017)

    Article  CAS  Google Scholar 

  40. L. Zhao, Y. Chen, B. Wang, C. Sun, S. Chakraborty, K. Ramasubramanian, P.K. Dutta, W.S.W. Ho, Multilayer polymer/zeolite Y composite membrane structure for CO2 capture from flue gas. J. Membr. Sci. 498, 1 (2016)

    Article  CAS  Google Scholar 

  41. J.H. Meldon, P. Stroeve, V.E. Gregoire, Facilitated transport of carbon monoxide: a review. Chem. Eng. Commun. 16, 263 (1982)

    Article  CAS  Google Scholar 

  42. Y. Han, Facilitated transport membranes for carbon capture from flue gas and H2 purification. https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=osu1543333780761185&disposition=inline. Accessed 28 Feb 2021

  43. R.P. Singh, K.A. Berchtold, Precombustion Carbon Capture (Elsevier, Amsterdam, 2015), pp. 177–206

    Google Scholar 

  44. M. Olaru, I. Bordianu, B.C. Simionescu, Polymers in membrane science. https://www.researchgate.net/profile/Gheorghe_Nechifor/publication/314257931_9_BCS-PPI/data/58be3c5ba6fdcc2d14eb58c3/9-BCS-PPI.pdf. Accessed 9 Mar 2021

  45. R. Pandey, Photopolymers in 3D printing applications (2014)

  46. M. Raouf, R. Abedini, M. Omidkhah, E. Nezhadmoghadam, A favored CO2 separation over light gases using mixed matrix membrane comprising polysulfone/polyethylene glycol and graphene hydroxyl nanoparticles. Process Saf. Environ. Prot. 133, 394 (2020)

    Article  CAS  Google Scholar 

  47. S.C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt, Polymers for 3D printing and customized additive manufacturing. Chem. Rev. 117, 10212 (2017)

    Article  CAS  Google Scholar 

  48. J. Lee, J. An, C.K. Chua, Fundamentals and applications of 3D printing for novel materials. Appl. Mater. Today 7, 120 (2017)

    Article  Google Scholar 

  49. Z. Dai, V. Ottesen, J. Deng, R.M.L. Helberg, L. Deng, A brief review of nanocellulose based hybrid. Fibers 1 (2019)

  50. J. Lee, W. See, J. An, C. Kai, C.Y. Tang, A.G. Fane, T. Haur, The potential to enhance membrane module design with 3D printing technology. J. Memb. Sci. 499, 480 (2016)

    Article  CAS  Google Scholar 

  51. E.B. Caldona, D.W. Smith, D.O. Wipf, Protective action of semi-fluorinated perfluorocyclobutyl polymer coatings against corrosion of mild steel. J. Mater. Sci. 55, 1796 (2020)

    Article  CAS  Google Scholar 

  52. E.B. Caldona, E.I. Borrego, K.E. Shelar, K.M. Mukeba, D.W. Smith Jr., Ring-forming polymerization toward perfluorocyclobutyl and ortho-diynylarene-derived materials: from synthesis to practical applications. Materials 14, 1486 (2021)

    Article  CAS  Google Scholar 

  53. C. Staudt-Bickel, J.W. Koros, Improvement of CO2/CH4 separation characteristics of polyimides by chemical crosslinking. J. Membr. Sci. 155, 145 (1999)

    Article  CAS  Google Scholar 

  54. C. Klumpen, M. Breunig, T. Homburg, N. Stock, J. Senker, Microporous organic polyimides for CO2 and H2O capture and separation from CH4 and N2 mixtures: interplay between porosity and chemical function. Chem. Mater. 28, 5461 (2016)

    Article  CAS  Google Scholar 

  55. A. Georgiev, D. Dimov, E. Spassova, J. Assa, P. Dineff, G. Danev, Chemical and physical properties of polyimides: biomedical and engineering applications. In: High Performance Polymers—Polyimides Based—From Chemistry to Applications (2012)

  56. X.Y. Chen, N. Tien-Binh, S. Kaliaguine, D. Rodrigue, Polyimide membranes for gas separation: synthesis, processing and properties (2016), pp. 1–71

  57. X.Y. Chen, S. Kaliaguine, D. Rodrigue, Polymer hollow fiber membranes for gas separation: a comparison between three commercial resins. AIP Conference Proceedings 2139 (2019)

  58. H. Yao, N. Zhang, N. Song, K. Shen, P. Huo, S. Zhu, Y. Zhang, S. Guan, Microporous polyimide networks constructed through a two-step polymerization approach, and their carbon dioxide adsorption performance. Polym. Chem. 8, 1298 (2017)

    Article  CAS  Google Scholar 

  59. D.L. Dunson, Synthesis and characterization of thermosetting polyimide oligomers for microelectronics packaging, Ph.D. Dissertation, Virginia Polytechnic Institute and State University (2000)

  60. Z. Gao, Y. Wang, H. Wu, Y. Ren, Z. Guo, X. Liang, Y. Wu, Y. Liu, Z. Jiang, Surface functionalization of polymers of intrinsic microporosity (PIMs) membrane by polyphenol for efficient CO2 separation. Green Chem. Eng. (2020). https://doi.org/10.1016/j.gce.2020.12.003

    Article  Google Scholar 

  61. A. Arabi Shamsabadi, M. Rezakazemi, F. Seidi, H. Riazi, T. Aminabhavi, M. Soroush, Next generation polymers of intrinsic microporosity with tunable moieties for ultrahigh permeation and precise molecular CO2 separation. Prog. Energy Combust. Sci. 84, (2021)

    Article  Google Scholar 

  62. Z. Wang, Q. Shen, J. Liang, Y. Zhang, J. Jin, Adamantane-grafted polymer of intrinsic microporosity with finely tuned interchain spacing for improved CO2 separation performance. Sep. Purif. Technol. 233, 116008 (2020)

    Article  CAS  Google Scholar 

  63. N.B. Mckeown, The synthesis of polymers of intrinsic microporosity (PIMs). Sci. China Chem. 60, 1023 (2017)

    Article  CAS  Google Scholar 

  64. J. Song, N. Du, Y. Dai, G.P. Robertson, M.D. Guiver, S. Thomas, I. Pinnau, Linear high molecular weight ladder polymers by optimized polycondensation of tetrahydroxytetramethylspirobisindane. Macromolecules 41, 1 (2021)

    Google Scholar 

  65. A. Fuoco, Polymeric gas separation membranes. J. Membr. Sci. Technol. 8, 8 (2018)

    Article  Google Scholar 

  66. S. Saqib, S. Rafiq, N. Muhammad, A.L. Khan, A. Mukhtar, N.B. Mellon, Z. Man, M.H. Nawaz, F. Jamil, N.M. Ahmad, Perylene based novel mixed matrix membranes with enhanced selective pure and mixed gases (CO2, CH4, and N2) separation. J. Nat. Gas Sci. Eng. 73, 103072 (2020)

    Article  CAS  Google Scholar 

  67. R.D. Noble, Perspectives on mixed matrix membranes. J. Membr. Sci. 378, 393 (2011)

    Article  CAS  Google Scholar 

  68. D. Nguyen, M. Murialdo, K. Hornbostel, S. Pang, C. Ye, W. Smith, S. Baker, W. Bourcier, J. Knipe, R. Aines, J. Stolaroff, 3D printed polymer composites for CO2 capture. Ind. Eng. Chem. Res. 58, 22015 (2019)

    Article  CAS  Google Scholar 

  69. D. Venturi, L. Ansaloni, M.G. Baschetti, Nanocellulose based facilitated transport membranes for CO2 separation. Chem. Eng. Trans. 47, 349 (2016)

    Google Scholar 

  70. X.F. Zhang, T. Hou, J. Chen, Y. Feng, B. Li, X. Gu, M. He, J. Yao, Facilitated transport of CO2 through the transparent and flexible cellulose membrane promoted by fixed-site carrier. ACS Appl. Mater. Interfaces. 10, 24930 (2018)

    Article  CAS  Google Scholar 

  71. W. Zhang, M. Gaggl, G.J.G. Gluth, F. Behrendt, Gas separation using porous cement membrane. J. Environ. Sci. 26, 140 (2014)

    Article  CAS  Google Scholar 

  72. Z. Weiqi, Experimental investigation on gas separation using porous membranes, der Technischen Universität Berlin. https://d-nb.info/1013350804/34 (2011)

  73. A.H. Shafie, Gas separation membranes using cementitious-zeolite composite. https://era.library.ualberta.ca/items/0b5543c3-503a-4562-90c9-12e45c09e7a4/download/6103e4bb-d433-4011-b5f5-8ba69f40996e. Accessed 28 Feb 2021

  74. M.G. Plaza, S. Martínez, F. Rubiera, CO2 capture, use, and storage in the cement industry: state of the art and expectations. Energies 13, 5692 (2020)

    Article  CAS  Google Scholar 

  75. C.A. Scholes, M.T. Ho, A.A. Aguiar, D.E. Wiley, G.W. Stevens, S.E. Kentish, Membrane gas separation processes for CO2 capture from cement kiln flue gas. Int. J. Greenh. Gas Control. 24, 78 (2014)

    Article  CAS  Google Scholar 

  76. R. Castro-muñoz, V. Martin-gil, M.Z. Ahmad, Matrimid ® 5218 in preparation of membranes for gas separation: current state-of-the-art. Chem. Eng. Commun. 205, 161 (2018)

    Article  CAS  Google Scholar 

  77. S. Geng, J. Wei, S. Jonasson, J. Hedlund, K. Oksman, Multifunctional carbon aerogels with hierarchical anisotropic structure derived from lignin and cellulose nanofibers for CO2 capture and energy storage. ACS Appl. Mater. Interfaces. 12, 7432 (2020)

    Article  CAS  Google Scholar 

  78. J.E. Amonette, J. Matyáš, Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: a review. Microporous Mesoporous Mater. 250, 100 (2017)

    Article  CAS  Google Scholar 

  79. M. Zeeshan, K. Yalcin, F.E. Sarac Oztuna, U. Unal, S. Keskin, A. Uzun, A new class of porous materials for efficient CO2 separation: ionic liquid/graphene aerogel composites. Carbon 171, 79–87 (2021)

    Article  CAS  Google Scholar 

  80. D. Zhang, Y. Lin, W. Wang, Y. Li, G. Wu, Mechanically strong polyimide aerogels cross-linked with dopamine-functionalized carbon nanotubes for oil absorption. Appl. Surf. Sci. 543, 148833 (2021)

    Article  CAS  Google Scholar 

  81. A. Bagheri, J. Jin, Photopolymerization in 3D printing. ACS Appl. Polym. Mater. 1, 593 (2019)

    Article  CAS  Google Scholar 

  82. S. Wickramasinghe, T. Do, P. Tran, FDM-based 3D printing of polymer and associated composite: a review on mechanical properties. Polymers (2020). https://doi.org/10.3390/polym12071529

    Article  Google Scholar 

  83. H.T. Afarani, W. Carroll, E.J. Garboczi, J.J. Biernacki, Designing 3D printable cementitious materials with gel-forming polymers. Constr. Build. Mater. 268, (2021)

    Article  CAS  Google Scholar 

  84. R.V. Pazhamannil, P. Govindan, Current state and future scope of additive manufacturing technologies via vat photopolymerization. Mater. Today Proc. (2021). https://doi.org/10.1016/j.matpr.2020.11.225

    Article  Google Scholar 

  85. N.U. Barambu, M.R. Bilad, Y. Wibisono, J. Jaafar, T.M.I. Mahlia, A.L. Khan, Membrane surface patterning as a fouling mitigation strategy in liquid filtration: a review. Polymers 11, 1 (2019)

    Article  CAS  Google Scholar 

  86. M. Gillono, I. Roppolo, F. Frascella, L. Scaltrito, C.F. Pirri, A. Chiappone, CO2 permeability control in 3D printed light responsive structures. Appl. Mater. Today 18, 100470 (2020)

    Article  Google Scholar 

  87. S.Y. Chin, V. Dikshit, B.M. Priyadarshini, Y. Zhang, Powder-based 3D printing for the fabrication of device with micro and mesoscale features. Micromachines 11, 29 (2020)

    Article  Google Scholar 

  88. C. Cai, W.S. Tey, J. Chen, W. Zhu, X. Liu, T. Liu, L. Zhao, K. Zhou, Comparative study on 3D printing of polyamide 12 by selective laser sintering and multi jet fusion. J. Mater. Process. Technol. 288, 116882 (2021)

    Article  CAS  Google Scholar 

  89. S. Yuan, Advanced membrane synthesis methods: exploration of 3D printed membranes for oil/water separation and development of novel polymers for organic solvent nanofiltration—KU Leuven. https://limo.libis.be/primo-explore/fulldisplay?docid=LIRIAS2327124&context=L&vid=KULeuven&search_scope=ALL_CONTENT&tab=all_content_tab&lang=nl_BE (2018)

  90. A. Mostafaei, A.M. Elliott, J.E. Barnes, F. Li, W. Tan, C.L. Cramer, P. Nandwana, M. Chmielus, Binder jet 3D printing—process parameters, materials, properties, and challenges. Prog. Mater Sci. (2020). https://doi.org/10.1016/j.pmatsci.2020.100707

    Article  Google Scholar 

  91. M. Shirinia, M. Abdollahi, M. Omidkhah, Simultaneous enhancement of CO2 permeability and CO2/CH4 and CO2/N2 selectivity via incorporating dense, rubbery and CO2-philic vinyl acetate- based copolymers into poly(ethylene oxide-b-amide 6) membranes. React. Funct. Polym. 154, 104673 (2020)

    Article  CAS  Google Scholar 

  92. F.P.W. Melchels, J. Feijen, D.W. Grijpma, Biomaterials a review on stereolithography and its applications in biomedical engineering. Biomaterials 31, 6121 (2010)

    Article  CAS  Google Scholar 

  93. H. Zhang, K. Xue, C. Cheng, D. Gao, H. Chen, Study on the performance of CO2 capture from flue gas with ceramic membrane contactor. Sep. Purif. Technol. (2021). https://doi.org/10.1016/j.seppur.2021.118521

    Article  Google Scholar 

  94. M. Zhang, L. Deng, D. Xiang, B. Cao, S. Hosseini, P. Li, Approaches to suppress CO2-induced plasticization of polyimide membranes in gas. Processes 7, 51 (2019)

    Article  CAS  Google Scholar 

  95. A.M.W. Hillock, W.J. Koros, Cross-linkable polyimide membrane for natural gas purification and carbon dioxide plasticization reduction. Macromolecules 40, 583 (2007)

    Article  CAS  Google Scholar 

  96. J.D. Wind, C. Staudt-bickel, D.R. Paul, W.J. Koros, The effects of crosslinking chemistry on CO2 plasticization of polyimide gas separation membranes. Ind. Eng. Chem. Res. 41, 6139 (2002)

    Article  CAS  Google Scholar 

  97. Q. Chen, L. Han, J. Ren, L. Rong, P. Cao, R.C. Advincula, 4D printing via an unconventional fused deposition modeling route to high-performance thermosets. ACS Appl. Mater. Interfaces. 12, 50052 (2020)

    Article  CAS  Google Scholar 

  98. X. He, A review of material development in the field of carbon capture and the application of membrane-based processes in power plants and energy-intensive industries. Energy Sustain. Soc. (2018). https://doi.org/10.1186/s13705-018-0177-9

    Article  Google Scholar 

  99. S.D. Bazhenov, I.L. Borisov, D.S. Bakhtin, A.N. Rybakova, V.S. Khotimskiy, S.P. Molchanov, V.V. Volkov, High-permeance crosslinked PTMSP thin-film composite membranes as supports for CO2 selective layer formation. Green Energy Environ. 1, 235 (2016)

    Article  Google Scholar 

  100. J. Lee, W.S. Tan, J. An, C. Kai, C.Y. Tang, A.G. Fane, The potential to enhance membrane module design with 3D printing technology. J. Membr. Sci. (2015)

  101. L.D. Tijing, J.R.C. Dizon, I. Ibrahim, A.R.N. Nisay, H.K. Shon, R.C. Advincula, 3D printing for membrane separation, desalination and water treatment. Appl. Mater. Today. 18, 100486 (2020)

    Article  Google Scholar 

  102. S. Jasveer, X. Jianbin, Comparison of different types of 3D printing technologies. Int. J. Sci. Res. Publ. 8, 1 (2018)

    Google Scholar 

  103. M. Spoerk, C. Holzer, J. Gonzalez-gutierrez, Material extrusion-based additive manufacturing of polypropylene: a review on how to improve dimensional inaccuracy and warpage. J. Appl. Polym. Sci. 137, 48545 (2019)

    Article  CAS  Google Scholar 

  104. D.J. Whyte, R. Rajkhowa, B. Allardyce, A.Z. Kouzani, A review on the challenges of 3D printing of organic powders. Bioprinting 16, (2019)

    Article  Google Scholar 

  105. M. Walker, S. Humphries, 3D printing: applications in evolution and ecology. Ecol. Evol. 9, 4289 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

The authors (DBG) would like to thank the Department of Science and Technology- Engineering Research and Development for Technology (DOST-ERDT) for the financial support. Work (or Part of this work) was conducted by ORNL’s Center for Nanophase Materials Sciences by RCA, which is a US Department of Energy Office of Science User Facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rigoberto C. Advincula.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Rigoberto C. Advincula was an editor of this journal during the review and decision stage. For the MRS Communications policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutierrez, D.B., Caldona, E.B., Espiritu, R.D. et al. The potential of additively manufactured membranes for selective separation and capture of CO2. MRS Communications 11, 391–401 (2021). https://doi.org/10.1557/s43579-021-00062-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/s43579-021-00062-8

Keywords

Navigation