Skip to main content
Log in

Promoting effect of group VI metals on Ni/MgO for catalytic growth of carbon nanotubes by ethylene chemical vapour deposition

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The incorporation of 1 mass % of group VI metals (chromium, molybdenum, and tungsten) into 4 mass % of Ni/MgO catalysts was evaluated for the synthesis of carbon nanotubes (CNTs) by the catalytic chemical vapour deposition of ethylene. All materials were characterised by XRD, surface area, TEM, SEM, Raman spectroscopy, and TGA-DTA. The resulting data demonstrated that the addition of group VI metals improved the surface area and metal dispersion, thereby achieving a remarkable enhancement in catalytic growth activity. Among the metals of group VI, Mo was found to be the most effective promoter for catalysing the CNTs’ growth. From TEM observation, long CNTs with a higher degree of graphitization were obtained on the Ni-Mo/MgO catalyst. TGA and DTA analysis showed that the as-grown CNTs over both Ni-Mo and Ni-W/MgO catalysts exhibited higher thermal stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aboul-Gheit, A. K., Awadallah, A. E., El-Kossy, S. M., & Mahmoud, A. L. H. (2008) Effect of Pd or Ir on the catalytic performance of Mo/H-ZSM-5 during the non-oxidative conversion of natural gas to petrochemicals. Journal of Natural Gas Chemistry, 17, 337–343. DOI: 10.1016/s1003-9953(09)60005-0.

    Article  CAS  Google Scholar 

  • Aboul-Gheit, A. K., & Awadallah, A. E. (2009) Effect of combining the metals of group VI supported on H-ZSM-5 zeolite as catalysts for non-oxidative conversion of natural gas to petrochemicals. Journal of Natural Gas Chemistry, 18, 71–77. DOI: 10.1016/s1003-9953(08)60080-8.

    Article  CAS  Google Scholar 

  • Aboul-Gheit, A. K., Awadallah, A. E., Aboul-Enein, A. A., & Mahmoud, A. L. H. (2011) Molybdenum substitution by copper or zinc in H-ZSM-5 zeolite for catalyzing the direct conversion of natural gas to petrochemicals under non-oxidative conditions. Fuel, 90, 3040–3046. DOI: 10.1016/j.fuel.2011.05.010.

    Article  CAS  Google Scholar 

  • Aboul-Gheit, A. K., El-Masry, M. S., & Awadallah, A. E. (2012) Oxygen free conversion of natural gas to useful hydrocarbons and hydrogen over monometallic Mo and bimetallic Mo-Fe, Mo-Co or Mo-Ni/HZSM-5 catalysts prepared by mechanical mixing. Fuel Processing Technology, 102, 24–29. DOI: 10.1016/j.fuproc.2012.04.017.

    Article  CAS  Google Scholar 

  • Ago, H., Uehara, N., Yoshihara, N., Tsuji, M., Yumura, M., Tomonaga, N., & Setoguchi, T. (2006) Gas analysis of the CVD process for high yield growth of carbon nanotubes over metal-supported catalysts. Carbon, 44, 2912–2918. DOI: 10.1016/j.carbon.2006.05.049.

    Article  CAS  Google Scholar 

  • Andersen, S. M., Borghei, M., Lund, P., Elina, Y. R., Pasanen, A., Kauppinen, E., Ruiz, V., Kauranen, P., & Skou, E. M. (2013) Durability of carbon nanofiber (CNF) & carbon nanotube (CNT) as catalyst support for Proton Exchange Membrane Fuel Cells. Solid State Ionics, 231, 94–101. DOI: 10.1016/j.ssi.2012.11.020.

    Article  CAS  Google Scholar 

  • Ashok, J., Kumar, S. N., Venugopal, A., Kumari, V. D., & Subrahmanyam, M. (2007) CO x -free H2 production via catalytic decomposition of CH4 over Ni supportedonzeolite catalysts. Journal of Power Sources, 164, 809–814. DOI: 10.1016/j.jpowsour.2006.11.029.

    Article  CAS  Google Scholar 

  • Awadallah, A. E., Aboul-Enein, A. A., & Aboul-Gheit, A. K. (2014) Effect of progressive Co loading on commercial Co-Mo/Al2O3 catalyst for natural gas decomposition to CO x -free hydrogen production and carbon nanotubes. Energy Conversion and Management, 77, 143–151. DOI: 10.1016/j.enconman.2013.09.017.

    Article  CAS  Google Scholar 

  • Cassell, A. M., Raymakers, J. A., Kong, J., & Dai, H. J. (1999) Large scale CVD synthesis of single-walled carbon nanotubes. The Journal of Physical Chemistry B, 103, 6484–6492. DOI: 10.1021/jp990957s.

    Article  CAS  Google Scholar 

  • Chai, S. P., Zein, S. H. S., & Mohamed, A. R. (2006) Preparation of carbon nanotubes over cobalt-containing catalysts via catalytic decomposition of methane. Chemical Physics Letter, 426, 345–350. DOI: 10.1016/j.cplett.2006.05.026.

    Article  CAS  Google Scholar 

  • Chen, M. H., Huang, Z. C., Wu, G. T., Zhu, G. M., You, J. K., & Lin, Z. G. (2003) Synthesis and characterization of SnO-carbon nanotube composite as anode material for lithiumion batteries. Materials Research Bulletin, 38, 831–836. DOI: 10.1016/s0025-5408(03)00063-1.

    Article  CAS  Google Scholar 

  • Chen, C. M., Dai, Y. M., Huang, J. G., & Jehng, J. M. (2006) Intermetallic catalyst for carbon nanotubes (CNTs) growth by thermal chemical vapor deposition method. Carbon, 44, 1808–1820. DOI: 10.1016/j.carbon.2005.12.043.

    Article  CAS  Google Scholar 

  • Chen, L., Liu, H. T., Yang, K., Wang, J. K., & Wang, X. L. (2009) Catalytic synthesis of carbon nanotubes from the decomposition of methane over a Ni-Co/La2O3 catalyst. Canadian Journal of Chemistry, 87, 47–53. DOI: 10.1139/v08-077.

    Article  CAS  Google Scholar 

  • de Lucas, A., Garrido, A., Sánchez, P., Romero, A., & Valverde, J. L. (2005) Growth of carbon nanofibers from Ni/Y zeolite based catalysts: Effects of Ni introduction method, reaction temperature, and reaction gas composition. Industrial & Engineering Chemistry Research, 44, 8225–8236. DOI: 10.1021/ie058027k.

    Article  Google Scholar 

  • Dresselhaus, M. S., Dresselhaus, G., Jorio, A., Souza Filho, A. G., & Saito, R. (2002) Raman spectroscopy on isolated single wall carbon nanotubes. Carbon, 40, 2043–2061. DOI: 10.1016/s0008-6223(02)00066-0.

    Article  CAS  Google Scholar 

  • Dupuis, A. C. (2005) The catalyst in the CCVD of carbon nanotubes—a review. Progress in Materials Science, 50, 929–961. DOI: 10.1016/j.pmatsci.2005.04.003.

    Article  CAS  Google Scholar 

  • Fan, S. S., Chapline, M. G., Franklin, N. R., Tombler, T. W., Cassell, A. M., & Dai, H. J. (1999) Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science, 283, 512–514. DOI: 10.1126/science.283.5401.512.

    Article  CAS  Google Scholar 

  • Flahaut, E., Peigney, A., Bacsa, W. S., Bacsa, R. R., & Laurent. Ch. (2004) CCVD synthesis of carbon nanotubes from (Mh,Co,Mo)O catalysts: influence of the proportions of cobalt and molybdenum. Journal of Materials Chemistry, 14, 646–653. DOI: 10.1039/b312367g.

    Article  CAS  Google Scholar 

  • Fujiwara, A., Ishii, K., Suematsu, H., Kataura, H., Maniwa, Y., Suzuki, S., & Achiba, Y. (2001) Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chemical Physics Letter, 336, 205–211. DOI: 10.1016/s0009-2614(01)00111-7.

    Article  CAS  Google Scholar 

  • Harutyunyan, A. R., Pradhan, B. K., Kim, U. J., Chen, G. G., & Eklund, P. C. (2002) CVD synthesis of single wall carbon nanotubes under “soft” conditions. Nano Letters, 2, 525–530. DOI: 10.1021/nl0255101.

    Article  CAS  Google Scholar 

  • Herrera, J. E., & Resasco, D. E. (2003) Role of Co-W interaction in the selective growth of single-walled carbon nanotubes from CO disproportionation. The Journal of Physical Chemistry B, 107, 3738–3746. DOI: 10.1021/jp027602k.

    Article  CAS  Google Scholar 

  • Jehng, J. M., Tung, W. C., & Kuo, C. H. (2008) The formation mechanisms of multi-wall carbon nanotubes over the Ni modified MCM-41 catalysts. Journal of Porous Materials, 15, 43–51. DOI: 10.1007/s10934-006-9050-x.

    Article  CAS  Google Scholar 

  • Kitiyanan, B., Alvarez, W. E., Harwell, J. H., & Resasco, D. E. (2000) Controlled production of single-wall carbon nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chemical Physics Letter, 317, 497–503. DOI: 10.1016/s0009-2614(99)01379-2.

    Article  CAS  Google Scholar 

  • Landois, P., Peigney, A., Laurent, Ch., Frin, L., Datas, L., & Flahaut, E. (2009) CCVD synthesis of carbon nanotubes with W/Co-MgO catalysts. Carbon, 47, 789–794. DOI: 10.1016/j.carbon.2008.11.018.

    Article  CAS  Google Scholar 

  • Lee, C. J., Park, J. H., Kim, J. M., Huh, Y., Lee, J. Y., & No, K. S. (2000) Low-temperature growth of carbon nanotubes by thermal chemical vapor deposition using Pd, Cr, and Pt as co-catalyst. Chemical Physics Letter, 327, 277–283. DOI: 10.1016/s0009-2614(00)00877-0.

    Article  CAS  Google Scholar 

  • Li, Y., Zhang, B. C., Tang, X. L., Xu, Y. D., & Shen, W. J. (2006) Hydrogen production from methane decomposition over Ni/CeO2 catalysts. Catalysis Communications, 7, 380–386. DOI: 10.1016/j.catcom.2005.12.002.

    Article  CAS  Google Scholar 

  • Li, Y. D., Li, D. X., & Wang, G. W. (2011) Methane decomposition to CO x -free hydrogen and nano-carbon material on group 8–10 base metal catalysts: A review. Catalysis Today, 162, 1–48. DOI: 10.1016/j.cattod.2010.12.042.

    Article  CAS  Google Scholar 

  • Loebick, C. Z., Derrouiche, S., Fang, F., Li, N., Haller, G. L., & Pfefferle, L. D. (2009) Effect of chromium addition to the Co-MCM-41 catalyst in the synthesis of single wall carbon nanotubes. Applied Catalysis A: General, 368, 40–49. DOI: 10.1016/j.apcata.2009.08.004.

    Article  Google Scholar 

  • Loebick, C. Z., Lee, S. C., Derrouiche, S., Schwab, M., Chen, Y., Haller, G. L., & Pfefferle, L. (2010) A novel synthesis route for bimetallic CoCr-MCM-41 catalysts with higher metal loadings. Their application in the high yield, selective synthesis of Single-Wall Carbon Nanotubes. Journal of Catalysis, 271, 358–369. DOI: 10.1016/j.jcat.2010.02.021.

    Article  Google Scholar 

  • Ni, L., Kuroda, K., Zhou, L. P., Kizuka, T., Ohta, K., Matsuishi, K., & Nakamura, J. (2006) Kinetic study of carbon nanotube synthesis over Mo/Co/MgO catalysts. Carbon, 44, 2265–2272. DOI: 10.1016/j.carbon.2006.02.031.

    Article  CAS  Google Scholar 

  • Pasha, M. A., Shafiekhani, A., & Vesaghi, M. A. (2009) Hot filament CVD of Fe-Cr catalyst for thermal CVD carbon nanotube growth from liquid petroleum gas. Applied Surface Science, 256, 1365–1371. DOI: 10.1016/j.apsusc.2009.08.090.

    Article  CAS  Google Scholar 

  • Pour, A. N., Zamani Kheirolah, Y., Jozani, J., & Mehr, J. Y. (2005) The influence of La2O3 and TiO2 on NiO/MgO/α-Al2O3. Reaction Kinetics and Catalysis Letters, 86, 157–162. DOI: 10.1007/s11144-005-0307-1.

    Article  Google Scholar 

  • Sinnott, S. B., Andrews, R., Qian, D., Rao, A. M., Mao, Z., Dickey, E. C., & Derbyshire, F. (1999) Model of carbon nanotube growth through chemical vapor deposition. Chemical Physics Letter, 315, 25–30. DOI: 10.1016/s0009-2614(99)01216-6.

    Article  CAS  Google Scholar 

  • Song, C. S., & Pan, W. (2004) Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H2/CO ratios. Catalysis Today, 98, 463–484. DOI: 10.1016/j.cattod.2004.09.054.

    Article  CAS  Google Scholar 

  • Takenaka, S., Kobayashi, S., Ogihara, H., & Otsuka, K. (2003) Ni/SiO2 catalyst effective for methane decomposition into hydrogen and carbon nanofiber. Journal of Catalysis, 217, 79–87. DOI: 10.1016/s0021-9517(02)00185-9.

    CAS  Google Scholar 

  • Tang, S., Zhong, Z., Xiong, Z., Sun, L., Liu, L., Lin, J., Shen, Z. X., & Tan, K. L. (2001) Controlled growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts. Chemical Physics Letters, 350, 19–26. DOI: 10.1016/s0009-2614(01)01183-6.

    Article  CAS  Google Scholar 

  • Tans, S. J., Verschueren, A. R. M., & Dekker, C. (1998) Room-temperature transistor based on a single carbon nanotube. Nature, 393, 49–52. DOI: 10.1038/29954.

    Article  CAS  Google Scholar 

  • Tauster, S. T., Fung, S. C., Baker, R. T. K., & Horsley, J. A. (1981) Strong interactions in supported-metal catalysts. Science, 211, 1121–1125. DOI: 10.1126/science.211.4487.1121.

    Article  CAS  Google Scholar 

  • Tauster, S. J. (1987) Strong metal-support interactions. Accounts of Chemical Research, 20, 389–394. DOI: 10.1021/ar00143a001.

    Article  CAS  Google Scholar 

  • Toebes, M. L., Zhang, Y. H., Hájek, J., Nijhuis, T. A., Bitter, J. H., van Dillen, A. J., Murzin, D. Yu., Koningsberger, D. C., & de Jong, K. P. (2004) Support effects in the hydrogenation of cinnamaldehyde over carbon nanofiber-supported platinum catalysts: characterization and catalysis. Journal of Catalysis, 226, 215–225. DOI: 10.1016/j.jcat.2004.05.026.

    Article  CAS  Google Scholar 

  • Wang, L. S., Tao, L. X., Xie, M. S., Xu, G. F., Huang, J. S., & Xu, Y. D. (1993) Dehydrogenation and aromatization of methane under non-oxidizing conditions. Catalysis Letters, 21, 35–41. DOI: 10.1007/bf00767368.

    Article  CAS  Google Scholar 

  • Willems, I., Kónya, Z., Fonseca, A., & Nagy, J. B. (2002) Heterogeneous catalytic production and mechanical resistance of nanotubes prepared on magnesium oxide supported Co-based catalysts. Applied Catalysis A: General, 229, 229–233. DOI: 10.1016/s0926-860x(02)00030-3.

    Article  CAS  Google Scholar 

  • Yeoh, W. M., Lee, K. Y., Chai, S. P., Lee, K. T., & Mohamed, A. R. (2010) The role of molybdenum in Co-Mo/MgO for large-scale production of high quality carbon nanotubes. Journal of Alloys and Compounds, 493, 539–543. DOI: 10.1016/j.jallcom.2009.12.151.

    Article  CAS  Google Scholar 

  • Yoshida, A., Kaburagi, Y., & Hishiyama, Y. (2006) Full width at half maximum intensity of the G band in the first order Raman spectrum of carbon material as a parameter for graphitization. Carbon, 44, 2333–2335. DOI: 10.1016/j.carbon.2006.05.020.

    Article  CAS  Google Scholar 

  • Zheng, G. B., Kouda, K., Sano, H., Uchiyama, Y., Shi, Y. F., & Quan, H. J. (2004) A model for the structure and growth of carbon nanofibers synthesized by the CVD method using nickel as a catalyst. Carbon, 42, 635–640. DOI: 10.1016/j.carbon.2003.12.077.

    Article  CAS  Google Scholar 

  • Zhou, L. P., Ohta, K., Kuroda, K., Lei, N., Matsuishi, K., Gao, L. Z., Matsumoto, T., & Nakamura, J. (2005) Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes. The Journal of Physical Chemistry B, 109, 4439–4447. DOI: 10.1021/jp045284e.

    Article  CAS  Google Scholar 

  • Zhou, W. W., Han, Z. Y., Wang, J. Y., Zhang, Y., Jin, Z., Sun, X., Zhang, Y. W., Yan, C. H., & Li, Y. (2006) Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Letters, 6, 2987–2990. DOI: 10.1021/nl061871v.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed E. Awadallah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awadallah, A.E. Promoting effect of group VI metals on Ni/MgO for catalytic growth of carbon nanotubes by ethylene chemical vapour deposition. Chem. Pap. 69, 316–324 (2015). https://doi.org/10.1515/chempap-2015-0029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0029

Keywords

Navigation