Skip to main content
Log in

Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Various types of carbon nanoparticles were directly mixed with microbial cells of Gluconobacter oxydans within a 3-D bionanocomposite in order to prepare a highly sensitive ethanol biosensor with a short response time. From all carbonaceous nanomaterials tested, single- or multi-walled carbon nanotubes provided the highest sensitivity of detection (117–121 µA cm−2 mM−1), but from a practical point of view, Ketjen black 300 and 600 provide very low detection limit (2–6 µM) and high sensitivity for the ethanol analysis (84–88 µA cm−2 mM−1)with a shortresponse time (14–33 s). Moreover, the price of Ketjen black is a few orders of magnitude lower compared to that of carbon nanotubes. Finally, the study showed that the morphology of nanoparticles rather than their surface modification is the key element in achieving high sensitivity of ethanol detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bertók, T., Katrlík, J., Gemeiner, P., & Tkac, J. (2013). Electrochemical lectin based biosensors as a label-free tool in glycomics. Microchimica Acta, 180, 1–13. DOI: 10.1007/s00604-012-0876-4.

    Article  Google Scholar 

  • Bertokova, A., Bertok, T., Filip, J., & Tkac, J. (2014). Gluconobacter sp. cells for manufacturing of efficient electrochemical biosensors and biofuel cells. Chemical Papers, in press.

  • Bucko, M., Mislovičová, D., Nahálka, J., Vikartovská, A., Šefčovičová, J., Katrlík, J., Tkáč, J., Gemeiner, P., Lacík, I., Štefuca, V., Polakovič, M., Rosenberg, M., Rebroš, M., Šmogrovičová, D., & Švitel, J. (2012). Immobilization in biotechnology and biorecognition: from macro- to nanoscale systems. Chemical Papers, 66, 983–998. DOI: 10.2478/s11696-012-0226-3.

    Article  CAS  Google Scholar 

  • Filip, J., Šefčovičová, J., Gemeiner, P., & Tkac, J. (2013). Electrochemistry of bilirubin oxidase and its use in preparation of a low cost enzymatic biofuel cell based on a renewable composite binder chitosan. Electrochimica Acta, 87, 366–374. DOI: 10.1016/j.electacta.2012.09.054.

    Article  CAS  Google Scholar 

  • Ikeda, T., Kurosaki, T., Takayama, K., Kano, K., & Miki, K. (1996). Measurements of oxidoreductase-like activity of intact bacterial cells by an amperometric method using a membrane-coated electrode. Analytical Chemistry, 68, 192–198. DOI: 10.1021/ac950240a.

    Article  CAS  Google Scholar 

  • Kondo, T., & Ikeda, T. (1999). An electrochemical method for the measurements of substrate-oxidizing activity of acetic acid bacteria using a carbon-paste electrode modified with immobilized bacteria. Applied Microbiology and Biotechnology, 51, 664–668. DOI: 10.1007/s002530051448.

    Article  CAS  Google Scholar 

  • Lei, Y., Chen, W., & Mulchandani, A. (2006). Microbial biosensors. Analytica Chimica Acta, 568, 200–210. DOI: 10.1016/j.aca.2005.11.065.

    Article  CAS  Google Scholar 

  • Logan, B. E., & Elimelech, M. (2012). Membrane-based processes for sustainable power generation using water. Nature, 488, 313–319. DOI: 10.1038/nature11477.

    Article  CAS  Google Scholar 

  • Logan, B. E., & Rabaey, K. (2012). Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science, 337, 686–690. DOI: 10.1126/science.1217412.

    Article  CAS  Google Scholar 

  • Lovley, D. R. (2006). Bug juice: harvesting electricity with microorganisms. Nature Reviews Microbiology, 4, 497–508. DOI: 10.1038/nrmicro1442.

    Article  CAS  Google Scholar 

  • Mahadevan, R., Palsson, B. Ø., & Lovley, D. R. (2011). In situ to in silico and back: elucidating the physiology and ecology of Geobacter spp. using genome-scale modelling. Nature Reviews Microbiology, 9, 39–50. DOI: 10.1038/nrmicro2456.

    Article  CAS  Google Scholar 

  • Mehdinia, A., Dejaloud, M., & Jabbari, A. (2013). Nanostructured polyaniline-coated anode for improving microbial fuel cell power output. Chemical Papers, 67, 1096–1102. DOI: 10.2478/s11696-013-0381-1.

    Article  CAS  Google Scholar 

  • Park, M., Tsai, S. L., & Chen, W. (2013). Microbial biosensors: Engineered microorganisms as the sensing machinery. Sensors, 13, 5777–5795. DOI: 10.3390/s130505777.

    Article  CAS  Google Scholar 

  • Šefčovičová, J., Filip, J., Gemeiner, P., Vikartovská, A., Pätoprstý, V., & Tkac, J. (2011). High performance microbial 3-D bionanocomposite as a bioanode for a mediated biosensor device. Electrochemistry Communications, 13, 966–968. DOI: 10.1016/j.elecom.2011.06.013.

    Article  Google Scholar 

  • Šefčovičová, J., Filip, J., Mastihuba, V., Gemeiner, P., & Tkac, J. (2012). Analysis of ethanol in fermentation samples by a robust nanocomposite-based microbial biosensor. Biotechnology Letters, 34, 1033–1039. DOI: 10.1007/s10529-012-0875-x.

    Article  Google Scholar 

  • Šefčovičová, J., & Tkac, J. (2014). Application of nanomaterials in microbial-cell biosensor constructions. Chemical Papers, in press.

  • Su, L., Jia, W., Hou, C., & Lei, Y. (2011). Microbial biosensors: A review. Biosensors and Bioelectronics, 26, 1788–1799. DOI: 10.1016/j.bios.2010.09.005.

    Article  CAS  Google Scholar 

  • Švitel, J., Tkáč, J., Voštiar, I., Navrátil, M., Štefuca, V., Bučko, M., & Gemeiner, P. (2006). Gluconobacter in biosensors: applications of whole cells and enzymes isolated from gluconobacter and acetobacter to biosensor construction. Biotechnology Letters, 28, 2003–2010. DOI: 10.1007/s10529-006-9195-3.

    Article  Google Scholar 

  • Tans, S. J., Verschueren, A. R. M., & Dekker, C. (1998). Room-temperature transistor based on a single carbon nanotube. Nature, 393, 49–52. DOI: 10.1038/29954.

    Article  CAS  Google Scholar 

  • Tkac, J., Vostiar, I., Gorton, L., Gemeiner, P., & Sturdik, E. (2003). Improved selectivity of microbial biosensor using membrane coating. Application to the analysis of ethanol during fermentation. Biosensors and Bioelectronics, 18, 1125–1134. DOI: 10.1016/s0956-5663(02)00244-0.

    Article  CAS  Google Scholar 

  • Tkáč, J., Štefuca, V., & Gemeiner, P. (2005). Biosensors with immobilised microbial cells using amperometric and thermal detection principles. In V. Nedović, & R. Willaert (Eds.), Applications of cell immobilisation biotechnology (Series: Focus on biotechnology, Vol. 8B, pp. 549–566): Dordrecht, The Netherlands: Springer. DOI: 10.1007/l-4020-3363-x_33.

    Chapter  Google Scholar 

  • Tkac, J., Svitel, J., Vostiar, I., Navratil, M., & Gemeiner, P. (2009). Membrane-bound dehydrogenases from Gluconobacter sp.: Interfacial electrochemistry and direct bioelectrocatalysis. Bioelectrochemistry, 76, 53–62. DOI: 10.1016/j.bioelechem.2009.02.013.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Tkac.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šefčovičová, J., Filip, J. & Tkac, J. Interfacing of microbial cells with nanoparticles: Simple and cost-effective preparation of a highly sensitive microbial ethanol biosensor. Chem. Pap. 69, 176–182 (2015). https://doi.org/10.1515/chempap-2015-0012

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/chempap-2015-0012

Keywords

Navigation