Skip to main content

Biosensors with Immobilised Microbial Cells Using Amperometric and Thermal Detection Principles

  • Chapter
Applications of Cell Immobilisation Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 8B))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thevenot, D.R.; Toth, K.; Durst, R.A. and Wilson G.S. (1999) Electrochemical biosensors: Recommended definitions and classification. Pure Appl. Chem. 71: 2333–2348.

    CAS  Google Scholar 

  2. Racek, J. (1995) Cell-based biosensors. Technomic Publishing Company, Inc., Basel, Switzerland; ISBN 1-56676-190-5; pp. 1–72.

    Google Scholar 

  3. D’Souza, S.F. (2001) Microbial biosensors. Biosens. Bioelectron. 16: 337–353.

    Google Scholar 

  4. Wittmann, C.; Riedel, K. and Schmid, R.D. (1997) Microbial and enzyme sensors for environmental monitoring. In: Kress-Rogers, E. (Ed.) Handbook of biosensors and electronic noses. Medicine, food and environment. CRC Press, London (UK); ISBN 0-8493-8905-4; pp. 299–332.

    Google Scholar 

  5. Riedel, K. (1998) Microbial biosensors based on oxygen electrodes. In: Mulchandani, A. and Rogers, K.R. (Eds.) Enzyme and microbial biosensors: Techniques and Protocols. Volume 6 from the series Walker, J.M. (Ser.Ed.) Methods in biotechnology. Humana Press Inc., Totowa (USA); ISBN 0-8960-3410-0; pp. 199–224.

    Google Scholar 

  6. Arikawa, Y.; Ikebukuro, K. and Karube, I. (1998) Microbial biosensors based on respiratory inhibition. In Mulchandani, A. and Rogers, K.R. (Eds.) Enzyme and microbial biosensors: Techniques and Protocols. Volume 6 from the series Walker, J.M. (Ser.Ed.) Methods in biotechnology. Humana Press Inc., Totowa (USA); ISBN 0-8960-3410-0; pp. 225–236.

    Google Scholar 

  7. Wang, A. A.; Mulchandani, A. and Chen, W. (2001) Whole-cell immobilization using cell surfaceexposed cellulose-binding domain. Biotechnol. Prog. 17: 407–411.

    Article  PubMed  CAS  Google Scholar 

  8. Gorton, L. (1995) Carbon paste electrodes modified with enzymes, tissues and cells. Electroanal. 7: 23–45.

    Article  CAS  Google Scholar 

  9. Gill, I. (2001) Bio-doped nanocomposite polymers: Sol-gel bioencapsulates. Chem. Mater. 13: 3404–3421.

    Article  CAS  Google Scholar 

  10. Daunert, S.; Barrett, G.; Feliciano, J.S.; Shetty, R.S.; Shrestha, S. and Smith-Spencer, W. (2000) Genetically engineered whole-cell sensing systems: Coupling biological recognition with reporter genes. Chem. Rev. 100: 2705–2738.

    Article  PubMed  CAS  Google Scholar 

  11. Reshetilov, A.N.; Lobanov, A.V.; Morozova, N.O.; Gordon, S.H.; Greene, R.V. and Leathers, T.D. (1998) Detection of ethanol in a two-component glucose/ethanol mixture using a nonselective microbial sensor and a glucose enzyme electrode. Biosens. Bioelectron. 13: 787–793 and references cited therein.

    Article  PubMed  CAS  Google Scholar 

  12. Tkac, J.; Vostiar, I.; Gorton, L.; Gemeiner, P. and Sturdik, E. (2003) Improved selectivity of microbial biosensor using membrane coating. Application to the analysis of ethanol during fermentation. Biosens. Bioelectron. 18: 1125–1134.

    Article  PubMed  CAS  Google Scholar 

  13. Svitel, J.; Curilla, O. and Tkac, J. (1998) Microbial cell-based biosensor for sensing glucose, sucrose or lactose. Biotechnol. Appl. Biochem. 27: 153–158.

    PubMed  CAS  Google Scholar 

  14. Mulchandani, P.; Chen, W.; Mulchandani, A.; Wang, J. and Chen L. (2001) Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorus hydrolase. Biosens. Bioelectron. 16: 433–437.

    Article  PubMed  CAS  Google Scholar 

  15. Lusta, K.A. and Reshetilov, A.N. (1998) Physiological and biochemical features of Gluconobacter oxydans and prospects of their use in biotechnology and biosensor systems. Appl. Biochem. Microbiol. 34:307–320 and references cited therein.

    Google Scholar 

  16. Matsushita, K.; Toyama, H.; Yamada, M. and Adachi, O. (2002) Quinoproteins: structure, functions and biotechnological applications. Appl. Microb. Biotechnol. 58: 13–22.

    Article  CAS  Google Scholar 

  17. Deppenmeier, U.; Hoffmeister, M. and Prust, C. (2002) Biochemistry and biotechnological applications of Gluconobacter strains. Appl. Microbiol. Biotechnol. 60: 233–242.

    Article  PubMed  CAS  Google Scholar 

  18. Macauley, S.; McNeil, B. and Harvey, L.M. (2001) The genus Gluconobacter and its applications in biotechnology. Crit. Rev. Biotechnol. 21: 1–25.

    Article  PubMed  CAS  Google Scholar 

  19. Laurinavicius, V.; Razumiene, J.; Kurtinaitiene, B.; Lapenaite, I.; Bachmatova, I.; Marcinkeviciene, L.; Meskys, R. and Ramanavicius, A. (2002) Bioelectrochemical application of some PQQ-dependent enzymes. Bioelectrochem. 55: 29–32.

    Article  CAS  Google Scholar 

  20. Tkac, J.; Vostiar, I.; Sturdik, E.; Gemeiner, P.; Mastihuba, V. and Annus, J. (2001) Fructose biosensor based on D-fructose dehydrogenase immobilised on a ferrocene-embedded cellulose acetate membrane. Anal. Chim. Acta 439: 39–46 and references cited therein.

    Article  CAS  Google Scholar 

  21. Schuhmann, W.; Zimmermann, H.; Haberműller, K. and Laurinavicius, V. (2000) Electron-transfer pathways between redox enzymes and electrode surfaces: Reagentless biosensors based on thiol-monolayerbound and polypyrrole-entrapped enzymes. Faraday Discuss. 116: 245–255 and references cited therein.

    Article  PubMed  CAS  Google Scholar 

  22. Ikeda, T. (1997) Direct redox communication between enzymes and electrodes. In: Scheller, F.W.; Schubert, F. and Fedrowitz, J. (Eds.) Frontiers in Biosensorics I, Fundamental aspects. Springer Verlag, Basel (Switzerland); ISBN 3-7643-5475-5; pp. 243–266.

    Google Scholar 

  23. Tkac, J. and Svitel, J. (1997) Determination of glucose and lactose in milk by microbial biosensors. Bull. Food Sci. 36: 113–121 (in Slovak).

    Google Scholar 

  24. Lobanov, A.V.; Borisov, I.A.; Gordon, S.H.; Greene, R.V.; Leathers, T.D. and Reshetilov, A.N. (2001) Analysis of ethanol-glucose mixtures by two microbial sensors: application of chemometrics and artificial neural networks for data processing. Biosens. Bioelectron. 16: 1001–1007.

    Article  PubMed  CAS  Google Scholar 

  25. Reshetilov, A.N.; Efremov, D.A.; Iliasov, P.V.; Boronin, A.M.; Kukushskin, N.I.; Greene, R.V. and Leathers, T.D. (1998) Effects of high oxygen concentrations on microbial biosensor signals. Hyperoxygenation by means of perfluorodecalin. Biosens. Bioelectron. 13: 795–799.

    Article  PubMed  CAS  Google Scholar 

  26. Takayama, K.; Kurosaki, T. and Ikeda, T. (1993) Mediated electrocatalysis at a biocatalyst electrode based on a bacterium Gluconobacter industrius. J. Electroanal. Chem. 356: 295–301.

    Article  CAS  Google Scholar 

  27. Tkac, J.; Gemeiner, P.; Svitel, J.; Benikovsky, T.; Sturdik, E.; Vala, V.; Petrus, L. and Hrabarova, E. (2000) Determination of total sugars in lignocellulose hydrolysate by mediated Gluconobacter oxydans biosensor. Anal. Chim. Acta 420: 1–7.

    Article  CAS  Google Scholar 

  28. Tkac, J.; Vostiar, I.; Gemeiner, P. and Sturdik, E. (2002) Monitoring of ethanol during fermentation using a microbial biosensor with enhanced selectivity. Bioelectrochem. 56: 127–129.

    Article  CAS  Google Scholar 

  29. Tkac, J.; Svitel, J.; Novak, R. and Sturdik, E. (2000) Triglyceride assay by amperometric microbial biosensor: Sample hydrolysis and kinetic approach. Anal. Lett. 33: 2441–2452.

    CAS  Google Scholar 

  30. Ikeda, T.; Kurosaki, T.; Takayama, K.; Kano, K. and Miki, K. (1996) Measurement of oxidoreductaselike activity of intact bacterial cells by an amperometric method using a membrane-coated electrode. Anal. Chem. 68: 192–198.

    Article  PubMed  CAS  Google Scholar 

  31. Lee, S.A.; Choi, Y.; Jung, S. and Kim S. (2002) Effect of initial carbon sources on the electrochemical detection of glucose by Gluconobacter oxydans. Bioelectrochem. 57: 173–178.

    Article  CAS  Google Scholar 

  32. Kitagawa, Y.; Ameyama, M.; Nakashima, K.; Tamiya, E. and Karube, I. (1987) Amperometric alcohol sensor based on immobilised bacteria cell membrane. Analyst 112: 1747–1749.

    Article  PubMed  CAS  Google Scholar 

  33. Shinagawa, E.; Matsushita, K.; Adachi, O. and Ameyama, M.J. (1990) Evidence for electron transfer via ubiquinone between quinoproteins D-glucose dehydrogenase and alcohol dehydrogenase of Gluconobacter suboxydans. J. Biochem. 107: 863–867.

    PubMed  CAS  Google Scholar 

  34. Tkac, J.; Navratil, M.; Sturdik, E. and Gemeiner, P. (2001) Monitoring of dihydroxyacetone production during oxidation of glycerol by immobilized Gluconobacter oxydans cells with an enzyme biosensor. Enzyme Microb. Technol. 28: 383–388.

    Article  PubMed  CAS  Google Scholar 

  35. Stredansky, M.; Pizzariello, A.; Stredanska S. and Miertus, S. (2000) Amperometric pH-sensing biosensors for urea, penicillin, and oxalacetate. Anal. Chim. Acta 415: 151–157.

    Article  CAS  Google Scholar 

  36. Vostiar, I.; Tkac, J.; Sturdik, E. and Gemeiner, P. (2002) Amperometric urea biosensor based on urease and electropolymerized toluidine blue dye as a pH-sensitive redox probe. Bioelectrochem. 56: 23–25.

    Article  Google Scholar 

  37. Gerard, M.; Chaubey, A. and Malhotra, B.D. (2002) Application of conducting polymers to biosensors. Biosens. Bioelectron. 17: 345–359.

    Article  PubMed  CAS  Google Scholar 

  38. Kemp, R.B. and Lamprecht, I. (2000) La vie est donc un feu pour la calorimetrie: half a century of calorimetry-Ingemar Wadsö at 70. Thermochim. Acta 348: 1–17.

    Article  CAS  Google Scholar 

  39. Ramanathan, K.; Rank, M.; Svitel, J.; Dzgoev, A. and Danielsson, B. (1999) The development and applications of thermal biosensors for bioprocess monitoring. TIBTECH 17: 499–505.

    CAS  Google Scholar 

  40. Ramanathan, K. and Danielsson, B. (2001) Principles and applications of thermal biosensors. Biosens. Bioelectron. 16: 417–423.

    Article  PubMed  CAS  Google Scholar 

  41. Gerbsch, N. and Buchholz, R. (1995) New processes and actual trends in biotechnology. FEMS Microbiol. Revs. 16: 259–269.

    CAS  Google Scholar 

  42. Prüsse, U., Jahnz, U., Wittlich, P., Breford, J. and Vorlop, K.-D. (2002) Bead production with JetCutting and rotating disc/nozzle technologies. Landbauforschung Völkenrode SH 241: 1–10 and references cited herein.

    Google Scholar 

  43. Danielsson, B.; Mosbach, K.; Winquist, F. and Lundström, I. (1988) Biosensors based on thermistors and semiconductors and their bioanalytical applications. Sensors and Actuators 13: 139–146.

    Article  CAS  Google Scholar 

  44. Mattiasson, B.; Larsson, P.-O. and Mosbach, K. (1977) Microbe thermistor. Nature 268: 519–520.

    Article  PubMed  CAS  Google Scholar 

  45. Thavarungkul, P.; Hakanson, H. and Mattiasson, B. (1991) Comparative study of cell-based biosensors using Pseudomonas cepacia for monitoring aromatic compounds. Anal. Chim. Acta 249: 17–23.

    Article  CAS  Google Scholar 

  46. Danielsson, B. and Mosbach, K. (1988), Enzyme thermistors. In: Mosbach, K (Ed.) Immobilized Enzymes and Cells. Volume 137 from the series Colowick, S.P. and Kaplan, N.O. (Ser.Eds.) Methods in Enzymology. Academic Press, San Diego (USA); ISBN 0-12-182037-8; pp. 181–197.

    Google Scholar 

  47. Svitel, J.; Vostiar, I.; Gemeiner, P. and Danielsson, B. (1997) Determination of citrate by FIA using immobilized Enterobacter aerogenes cells and enzyme thermistor/flow microcalorimeter detection. Biotechnol. Tech. 11: 917–919.

    Article  Google Scholar 

  48. Wadsö, I. (1986) Bio-calorimetry. TIBTECH — February: 45–51.

    Google Scholar 

  49. Stefuca, V. and Gemeiner, P. (1999) Investigation of catalytic properties of immobilized enzymes and cells by flow microcalorimetry. In: Scheper, T. (Ed.) Thermal Biosensors Bioactivity Bioaffinity. Volume 64 from the series Scheper, T. (Ser.Ed.), Advances in Biochemical Engineering/Biotechnology. Springer-Verlag, Berlin-Heidelberg (Germany); ISSN 0724-6145; pp. 71–99.

    Google Scholar 

  50. Gemeiner, P.; Stefuca, V.; Welwardova, A.; Michalkova, E.; Welward, L.; Kurillova, L. and Danielsson, B. (1993) Direct determination of the cephalosporin transforming activity of immobilized cells with use of an enzyme thermistor. 1. Verification of the mathematical model. Enzyme Microb. Technol. 15: 50–56.

    Article  PubMed  CAS  Google Scholar 

  51. Stefuca, V.; Welwardova, A.; Gemeiner, P. and Jakubova, A. (1994) Application of enzyme flow microcalorimetry to the study of microkinetic properties of immobilized biocatalyst. Biotechnol. Tech. 8: 497–502.

    CAS  Google Scholar 

  52. Welwardova, A.; Gemeiner, P.; Michalkova, E.; Welward, L. and Jakubova, A. (1993) Gel-entrapped penicilin G acylase optimized by an enzyme thermistor. Biotechnol. Tech. 7: 809–814.

    Article  CAS  Google Scholar 

  53. Stefuca, V.; Gemeiner, P.; Kurillova, L.; Danielsson, B. and Bales, V. (1990) Application of the enzyme thermistor to the direct estimation of intrinsic kinetics using the saccharose-immobilized invertase system. Enzyme Microb. Technol. 12: 830–835.

    Article  PubMed  CAS  Google Scholar 

  54. Docolomansky, P.; Gemeiner, P.; Mislovicova, D.; Stefuca, V. and Danielsson, B. (1994) Screening of Concanavalin A bead cellulose conjugates using an enzyme thermistor with immobilized invertase as the reporter catalyst. Biotechnol. Bioeng. 43: 286–292

    Article  CAS  Google Scholar 

  55. Vikartovska-Welwardova, A.; Michalkova, E.; Gemeiner, P. and Welward, L. (1999) Stabilization of Damino acid oxidase from Trigonopsis variabilis by manganese dioxide. Folia Microbiol. 44: 380–384.

    CAS  Google Scholar 

  56. Vikartovska, A.; Bucko, M.; Gemeiner, P.; Nahalka, J., and Hrabarova, E. (2003) Flow calorimetry-a useful tool for determination of immobilized cis-epoxysuccinate hydrolase activity from Nocardia tartaricans. Artif. Cells, Blood Substit. & Biotechnol. 32(1), 000-000, 2004, in press.

    Google Scholar 

  57. Vikartovska-Welwardova, A.; Gemeiner, P.; Stefuca, V.; Vrabel, P.; Michalkova, E. and Welward, L. (1998) Screening of immobilized Trigonopsis variabilis strains with cephalosporin C transforming activity by enzyme flow microcalorimetry. Biologia 53: 705–712.

    CAS  Google Scholar 

  58. Satterfield, C.N. (1976) Massoperedaca v geterogennom katalize (in Russian). Izdatelstvo Chimija, Moskva, (Russia); 66.015.23:66.097.13; p. 133.

    Google Scholar 

  59. Vikartovska-Welwardova, A.; Michalkova, E. and Gemeiner, P. (1998) Enzyme flow microcalorimetry-a useful tool for screening of immobilized penicillin G acylase. J. Chem. Technol. Biotechnol. 73: 31–36.

    Article  CAS  Google Scholar 

  60. Gemeiner, P.; Docolomansky, P.; Nahalka, J.; Stefuca, V. and Danielsson B. (1996) New approaches for verification of kinetic constants of immobilized concanavalin A: Invertase preparations investigated by flow microcalorimetry. Biotechnol. Bioeng. 49: 26–35.

    Article  CAS  Google Scholar 

  61. Stefuca, V.; Vikartovska-Welwardova, A. and Gemeiner, P. (1997) Flow microcalorimeter autocalibration of immobilized enzyme kinetics. Anal. Chim. Acta 355: 63–67.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Tkáč, J., Štefuca, V., Gemeiner, P. (2005). Biosensors with Immobilised Microbial Cells Using Amperometric and Thermal Detection Principles. In: Nedović, V., Willaert, R. (eds) Applications of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8B. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3363-X_33

Download citation

Publish with us

Policies and ethics