Skip to main content
Log in

Dioxygen reactivity of laccase

Dependence on laccase source, pH, and anion inhibition

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A study was carried out on the dioxygen reactivity of the laccases from Trametes villosa, Rhizoctonia solani, Myceliophthora thermophila, Scytalidium thermophilum, and Coprinus cinereus. At pH 5.5, these laccases showed an apparently constant K m (about 20–50 µM) for O2 with either 2,2′-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) or methyl syringate as the reducing substrate, in contrast to the k cat , which varied up to 100-fold. O2 reactivity of the Trametes and Myceliophthora laccases was also studied at various pH and NaF concentrations. The apparent K m of Trametes and Myceliophthora laccases varied only slightly when pH changed from 3.0 to 8.0 or when the laccases were inhibited by F at pH 5.5, although the apparent k cat were more significantly affected by both factors. The dependence of the apparent K m on the source of laccase, pH, and F inhibition suggested that the fungal laccases might have a conserved O2 pocket and that the F or OH inhibition might affect the O2 reduction step (k cat ) more than the O2 binding step (K m ) under steady-state conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farver, O. and Pecht, I. (1984), in Copper Proteins and Copper Enzymes, Lontie, R., ed., CRC Press, Boca Raton, FL, pp. 184–189.

    Google Scholar 

  2. Mayer, A. M. (1987), Phytochemistry 26, 11–20.

    Article  Google Scholar 

  3. Messerschmidt, A. (1997), Multi-Copper Oxidases, World Scientific, Singapore, pp. 23–80.

    Google Scholar 

  4. Yaropolov, A., Skorobogat’ko, O. V., Vartanov, S. S., and Varfolomeyev, S. D. (1994), Appl. Biochem. Biotechnol. 49, 257–280.

    CAS  Google Scholar 

  5. Call, H. (1994), PCT International patent WO 9429425 (December 22, 1994).

  6. Eggert, C., Temp, U., and Eriksson, K.-E. L. (1996), Appl. Environ. Microbiol. 62, 1151–1158.

    CAS  Google Scholar 

  7. Fukushima, Y. and Kirk, T. K. (1995), Appl. Environ. Microbiol. 61, 872–876.

    CAS  Google Scholar 

  8. Paice, M. G., Bourbonnais, R., Reid, I., Archibald, F. S., and Jurasek, L. (1995), J. Pulp Paper Sci. 21, J280-J284.

    CAS  Google Scholar 

  9. Xu, H., Lai, Y.-Z., Slomczynski, D., Nakas, J. P., and Tanenbaum, S. W. (1997), Biotechnol. Lett. 19, 957–960.

    Article  CAS  Google Scholar 

  10. Schneider, P. and Pedersen, A. H. (1995), PCT International patent WO9501426. (January 12, 1995).

  11. Jonas, U., Hammer, E., Schauer, F., and Bollag, J.-M. (1998), Biodegradation 8, 321–328.

    Article  CAS  Google Scholar 

  12. Majcherczyk, A., Johannes, C., and Hüttermann, A. (1998), Enzyme Microb. Technol. 22, 335–341.

    Article  CAS  Google Scholar 

  13. Potthast, A., Rosenau, T., Chen, C.-L., and Gratzl, J. S. (1995), J. Org. Chem. 60, 4320,4321.

    Article  CAS  Google Scholar 

  14. Agematu, H., Kominato, K., Shibamoto, N., Yoshioka, T., Nishida, H., Okamoto, R., Shin, T., and Murao, S. (1993), Biosci. Biotechnol. Biochem. 57, 1387,1388.

    Article  CAS  Google Scholar 

  15. Ducros, V., Brzozowski, A. M., Wilson, K. S., Brown, S. H., Østergaard, P., Schneider, P., Yaver, D. S., Pedersen, A. H., and Davies, G. J. (1998), Nature Struct. Biol. 5, 310–316.

    Article  CAS  Google Scholar 

  16. Iwasaki, H., Matsubara, T., and Mori, T. (1967), J. Biochem. 61, 814–816.

    CAS  Google Scholar 

  17. Petersen, L. C. and Degn, H. (1978), Biochim. Biophys. Acta 526, 85–92.

    CAS  Google Scholar 

  18. Varfolomeyev, S. D., Naki, A., Yaropolov, A. I., and Berezin, I. V. (1981), Biokhimia 50, 1411–1420.

    Google Scholar 

  19. Bao, W., O’Malley, D. M., Whetten, R., and Sederoff, R. R. (1993), Science 260, 672–674.

    Article  CAS  Google Scholar 

  20. Xu, F. (1997), J. Biol. Chem. 272, 924–928.

    CAS  Google Scholar 

  21. Shin, W., Sundaram, U. M., Cole, J. L., Zhang, H. H., Hedman, B., Hodgson, K. O., and Solomon, E. I. (1996), J. Am. Chem. Soc. 118, 3202–3215.

    Article  CAS  Google Scholar 

  22. Koudelka, G. B., Hansen, F. B., and Ettinger, M. J. (1985) J. Biol. Chem. 260, 15,561–15,565.

    CAS  Google Scholar 

  23. Xu, F. (1996), Biochemistry 35, 7608–7614.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, F. Dioxygen reactivity of laccase. Appl Biochem Biotechnol 95, 125–133 (2001). https://doi.org/10.1385/ABAB:95:2:125

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1385/ABAB:95:2:125

Index Entries

Navigation