Skip to main content
Log in

Selective oxidation and N-coupling by purified laccase of Xylaria polymorpha MTCC-1100

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The chemical route of oxidation of methyl group to its aldehyde is inconvenient because once a methyl group is attacked, it is likely to be oxidized to the carboxylic acid and it is very difficult to stop the reaction at the aldehyde stage. Fungal laccases can be used for such oxidation reaction and the reaction can be completed sharply within 1–2 h. Coupling of amines are another important reactions known for fungal laccases; coupling reactions generally take 3–7 h. We have used the purified laccase of molecular weight 63 kDa obtained from the fungal strain Xylaria polymorpha MTCC-1100 with activity of 1.95 IU/mL for selective oxidation of 2-fluorotoluene, 4-fluorotoluene, and 2-chlorotoluene to 2-fluorobenzaldehyde, 4-fluorobenzaldehyde, and 2-chlorobenzaldehyde, respectively, and syntheses of 3-(3, 4-dihydroxyphenyl)-propionic acid derivatives by N-coupling of amines. In each oxidation reactions, ABTS was used as mediator molecule. All the syntheses are ecofriendly and were performed at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoegger, P.J., Kilaru, S., Jomes, T.Y., Thacker, J.R., and Kuees, U., FEBS J., 2006, vol. 273, pp. 2308–2326.

    Article  CAS  PubMed  Google Scholar 

  2. Messerschmidt, A., Multi-Copper Oxidases, Singapore: World Scientific, 1997.

    Book  Google Scholar 

  3. Riva, S., Trends Biotechnol., 2006, vol. 24, no. 5, pp. 219–226.

    Article  CAS  PubMed  Google Scholar 

  4. Baldrian, P., FEMS Microbiol. Rev., 2006, vol. 30, pp. 215–242.

    Article  CAS  PubMed  Google Scholar 

  5. Dwivedi, U.N., Singh, P., Pandey, V.P., and Kumar, A., J. Mol. Cat. B: Enzymatic, 2011, vol. 68, no. 2, pp. 117–128.

    Article  CAS  Google Scholar 

  6. Solomon, E.I., Baldwin, M.J., and Lowery, M.D., Chem. Rev., 1992, vol. 92, pp. 521–542.

    Article  CAS  Google Scholar 

  7. Bento, I., Armenia, Corrondo, M., and Lindley, P.F., J. Biol. Inorg. Chem., 2006, vol. 5, pp. 539–547.

    Article  Google Scholar 

  8. Wandrey, C., Liese, A., and Kihumbu, D., Org. Proc. Res. Develop., 2000, vol. 4, no. 4, pp. 285–290.

    Article  Google Scholar 

  9. Couto, S.R. and Harrera, J.L.T., Biotechnol. Advan., 2006, vol. 24, pp. 500–513.

    Article  Google Scholar 

  10. Xu, F., Ind. Biotechnol., 2005, vol. 1, pp. 38–50.

    Article  CAS  Google Scholar 

  11. Acunzo, D.F. and Galli, C., J. Europ. Biochem., 2003, vol. 270, pp. 3634–3640.

    Article  Google Scholar 

  12. Morozova, O.V., Shumakovich, G.P., Shleev, S.V., and Yaropolov, Y.I., Appl. Biochem. Microbiol., 2003, vol. 43, pp. 523–535.

    Article  Google Scholar 

  13. Coniglio, A., Galli, C., and Gentili, P., J. Mol. Cat. B: Enzymatic, 2008, vol. 50, no. 1, pp. 40–49.

    Article  CAS  Google Scholar 

  14. Mikolasch, A., Niedermeyer, T.H.J., Lalk, M., Witt, S., Seefeld, S., Hammer, E., Schauer, F., Gesell, M., Hessel, S., Julich, W.D., and Lindoquist, U., Chem. Pharma. Bull., 2006, vol. 54, no. 5, pp. 632–638.

    Article  CAS  Google Scholar 

  15. Mikolasch, A., Niedermeyer, T.H.J., Lalk, M., Witt, S., Seefeld, S., Hammer, E., Schauer, F., Salazar, G., Hessel, S., Julich, W.D., and Lindequist, U., Chem. Pharma. Bull., 2007, vol. 55, no. 3, pp. 412–416.

    Article  CAS  Google Scholar 

  16. Mikolasch, A., Hammer, E., Jonas, U., Popowski, K., Stielow, A., and Schaner, F., Tetrahedron, 2002, vol. 58, pp. 7589–7593.

    Article  CAS  Google Scholar 

  17. Potthest, A., Rosenanu, T., Chen, C.-L., and Gratzl, J.S., J. Org. Chem., 1995, vol. 60, pp. 4320–4321.

    Article  Google Scholar 

  18. Fritz-Langhals, and Kunath, B., Tetrahedron Lett., 1998, vol. 39, pp. 5955–5956.

    Article  CAS  Google Scholar 

  19. Chaurasia, P.K., Yadav, A., Yadav, R.S.S., and Yadava, S., J. Chem. Sci., 2013, vol. 125, no. 6, pp. 1395–1403. doi: 10.1007/s12039-013-0525-4.

    Article  CAS  Google Scholar 

  20. Chaurasia, P.K., Yadav, R.S.S., and Yadava, S., Int. J. Res. Chem. Environ., 2013, vol. 3, no. 1, pp. 188–197.

    CAS  Google Scholar 

  21. Chaurasia, P.K., Yadav, A., Yadav, R.S.S., and Yadava, S., Appl. Biochem. Microbiol., 2013, no. 6, pp. 592–599.

    Google Scholar 

  22. Chaurasia, P.K., Yadav, R.S.S., and Yadava, S., Biochem.: An Indian Journal, 2012, vol. 6, no. 7, pp. 237–242.

    CAS  Google Scholar 

  23. Chaurasia, P.K., Yadav, R.S.S., and Yadava, S. Int. J. Res., Chem. Environ., 2013, vol. 3, no. 2, pp. 93–101.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Kumar Chaurasia.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaurasia, P.K., Yadava, S., Bharati, S.L. et al. Selective oxidation and N-coupling by purified laccase of Xylaria polymorpha MTCC-1100. Russ J Bioorg Chem 40, 455–460 (2014). https://doi.org/10.1134/S1068162014040025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1068162014040025

Keywords

Navigation