Skip to main content
Log in

Effect of Temperature on the Chromatographic Behavior of Epirubicin and its Analogues on High Purity Silica Using Reversed-Phase Solvents

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

The influence of temperature on the retention behavior of epirubicin and its analogues on high purity silica with reversed-phase solvents has been systematically investigated. It was found that temperature effects on retention are highly dependent on the type and concentration of organic modifier, as well as the pH of the mobile phase. In organic-rich mobile phases, the type of organic modifier plays an important role. With an aprotic solvent as modifier, retention times show anomalous increases with elevated temperature. At the same time, both efficiency and resolution are significantly improved but this is not the situation with a protic solvent as modifier. In addition, temperature shows different effects on retention time and selectivity when the pH is changed, and temperature-dependent selectivity reversal is found at higher pHs. In aqueous-rich mobile phases, regardless of the nature of the organic solvent and pH, retention of solutes drops as temperature is raised. It seems that the effect of temperature on chromatographic behavior of the solutes on bare silica using mobile phases containing various organic modifiers or pHs, results from a number of different retention mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li JW, Carr PW (1997) Anal Chem 69:2193–2201

    Article  CAS  Google Scholar 

  2. Yang XQ, Ma LJ, Carr PW (2005) J Chromatogr A 1079:213–220

    Article  CAS  Google Scholar 

  3. Li J (1998) Anal Chim Acta 369:21–37

    Article  CAS  Google Scholar 

  4. Dolan JW (2002) J Chromatogr A 965:195–205

    Article  CAS  Google Scholar 

  5. Chester TL, Coym JW (2003) J Chromatogr A 1003:101–111

    Article  CAS  Google Scholar 

  6. Claessens HA, Straten MA (2004) J Chromatogr A 1060:23–41

    CAS  Google Scholar 

  7. Castells CB, Gagliard LG, Ráfols C, Rosés M, Bosch E (2004) J Chromatogr A 1042:23–36

    Article  CAS  Google Scholar 

  8. Buckemaier SMC, McCalley DV, Euerby MR (2004) J Chromatogr A 1060:117–126

    Article  Google Scholar 

  9. Gagliardi LG, Castells CB, Ráfols C, Rosés M, Bosch E (2005) J Chromatogr A 1077:159–169

    Article  CAS  Google Scholar 

  10. McCarthy JP (1994) J Chromatogr A 685:349–355

    Article  CAS  Google Scholar 

  11. Lee W, Cho D, Chun BO, Chang T, Ree M (2001) J Chromatogr A 910:51–60

    Article  CAS  Google Scholar 

  12. Crommen J (1979) J Chromatogr 186:705–724

    Article  CAS  Google Scholar 

  13. Svendsen H, Greibrokk T (1981) J Chromatogr 212:153–166

    Article  CAS  Google Scholar 

  14. Bidlingmeyer BA, Del Rios JK, Korpi J (1982) Anal Chem 54:442–447

    Article  CAS  Google Scholar 

  15. Law B (1990) Trends Analyt Chem 9:31–36

    Article  CAS  Google Scholar 

  16. Bidlingmeyer BA, Henderson J (2004) J Chromatogr A 1060:187–193

    CAS  Google Scholar 

  17. Guo Y, Gaiki S (2004) J Chromatogr A 1074:71–80

    Article  Google Scholar 

  18. Naidong W (2003) J Chromatogr B 796:209–224

    Article  CAS  Google Scholar 

  19. Qi Y, Huang JX (2001) J Liq Chromatogr Relat Technol 24:2837–2848

    Article  CAS  Google Scholar 

  20. Melander W, Campbell DE, Horváth C (1978) J Chromatogr 158:215–225

    Article  CAS  Google Scholar 

  21. Zhuravlev LT (2000) Colloids Surf A Physicochem Eng Asp 173:1–38

    Article  CAS  Google Scholar 

  22. Li RP, Huang JX (2004) J Chromatogr A 1041:163–169

    Article  CAS  Google Scholar 

  23. Nawrocki J, Rigney RP, McCormick A, Carr PW (1993) J Chromatogr A 657:229–282

    Article  CAS  Google Scholar 

  24. Buckemaier SMC, McCalley DV, Euerby MR (2004) J Chromatogr A 1026:251–259

    Article  Google Scholar 

  25. Li RP, Huang JX (2005) J Liq Chromatogr Relat Technol 28:2737–2751

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junxiong Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, L., Huang, J. Effect of Temperature on the Chromatographic Behavior of Epirubicin and its Analogues on High Purity Silica Using Reversed-Phase Solvents. Chroma 65, 519–526 (2007). https://doi.org/10.1365/s10337-007-0200-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1365/s10337-007-0200-3

Keywords

Navigation