Skip to main content
Log in

The cold spray process and its potential for industrial applications

  • Reviewed Papers
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

Cold spraying has attracted serious attention since unique coating properties can be obtained by the process that are not achievable by conventional thermal spraying. This uniqueness is due to the fact that coating deposition takes place without exposing the spray or subtrate material to high temperatures and, in particular, without melting the sprayed particles. Thus, oxidation and other undesired reactions can be avoided. Spryy particles adhere to the substrate only because of their high kinetic energy on impact. For successful bonding, powder particles have to exceed a critical velocity on impact, which is dependent on the properties of the particular spray material. This requires new concepts for the description of coating formation but also indicates applications beyond the market for typical thermal spray coatings. The present contribution summarizes the current “state of the art” in cold spraying and demonstrates concepts for process optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Kreye, F. Gärtner, and H.J. Richter, High Velocity Oxy-Fuel Flame Spraying: State of the Art, New Developments and Aternatives, Proc. 6 Kolloqium Hochgeschwindigkeits-Flammspritzen, P. Heinrich, Ed., Gemeinschaft Thermisches Spritzen e. V., Unterschleißheim, Germany, 2003, p 5–17

    Google Scholar 

  2. A.P. Alkhimov, V.F. Kosarev, N.I. Nesterovich, and A.N. Papyrin, Method of Applying Coatings, Russian Patent 1618778, Sept, 8, 1990, priority of the invention June 6 1986

  3. A.P. Alkhimov, A.N. Papyrin, V.F. Kosarev, N.I. Nesterovich, and M.M. Shushpanov, Gas-Dynamic Spray Method for Applying a Coating, U.S. Patent 5,302,414, April 12, 1994

  4. A.P. Alkhimov, V.F. Kosarev, and A.N. Papyrin, A Method of Cold Gas-Dynamic Deposition, Sov. Phys. Dokl., 1990, 35(12), p 1047–1049 (Transl., American Inst. of Phys., 1991).

    Google Scholar 

  5. R.C. McCune and A.N. Papyrin, J.N. Hall, W.L. Riggs II, and P.H. Zajchowski, An Exploration of the Cold Gas-Dynamic Spray Method for Several Material Systems, Advances in Thermal Spray Science and Technology, C.C. Berndt and S. Sampath, Ed., Sept 11–15, 1995 (Houston, TX), ASM International, 1995, p 1–5.

    Google Scholar 

  6. A.P. Alkhimov, S.V. Klinkov, V.F. Kosarev, and A.N. Paprin, Gas-Dynamic Spraying: Study of a Plane Supersonic Two Phase Jet, J. Appl. Mech. Phys., 1997, 38(2), p 176–183

    Google Scholar 

  7. T. Stoltenhoff, H. Kreye, and H.J. Richter, An Analysis of the Cold Spray Process and Its Coatings, J. Thermal Spray Technol., 2002, 11, p 542–550

    Article  CAS  Google Scholar 

  8. T.H. Van Steenkiste, Kinetic Spraying: A New Coating Proess, Key Eng. Mater., 2001, 197, p 59–85

    Article  Google Scholar 

  9. T.H. Van Steenkiste, and J.R. Smith, Evaluation of Coatings Produced via Kinetic and Cold Spray Processes, J. Thermal Spray Technol., 2004, 13(2), p 274–282

    Article  CAS  Google Scholar 

  10. A.I. Kashirin, O.F. Klyuev, and T.V. Buzdygar, Apparatus for Gas-Dynamic Coating, U.S. Patent 6,402,050 B1, June 11, 2002

  11. H. Gabel and R.M. Tapphorn, A Apparatus and Process for Solid-State Deposition and Consolidation of High Velocity Powder Particles using Thermal Plastic Deformation, W.O. Patent 02-085332 A1, October 21, 2002.

  12. D.L. Gilmore, R.C. Dykhuizen, R.A. Neiser, T.J. Roemer, and M.F. Smith, Particle Velocity and Deposition Efficiency in the Cold Spray Process, J. Thermal Spray Technol., 1999, 8(4), p 576–582

    Article  CAS  Google Scholar 

  13. A. Papyrin, Cold Spray Technology, Adv. Mater. Proc., 2001, 159(9), p 49–51

    CAS  Google Scholar 

  14. J. Voyer, T. Stoltenhoff, T. Schmidt, Method and Potential of the Cold Spray Process, Proc. 6. Kolloqium Hochgeschwindigkeits-Flammspritzen, P. Heinrich, Ed., Gemeinschaft Thermisches Spritzen e.V., Unterschleißheim, Germany, 2003, p 39–47

    Google Scholar 

  15. M. Grujicic, C.L. Zhao, C. Tong, W.S. DeRosset, and D. Helfritch, Analysis of the impact Velocity of Powder Particles in the Cold-Gas Dynamic-Spray Process, Mater. Sci. Eng. A. 2003, 368(1–2) p 222–230

    Google Scholar 

  16. W.Y. Li and C.J. Li, Optimal Design of a Novel Cold Spray Gun Nozzle at a Limited Space, J. Thermal Spray Technol. 2005, 14(3), p 391–396

    Article  CAS  Google Scholar 

  17. R.C. Dykhuisen, M.F. Smith, D.L. Gilmore, R.A. Neiser, X. Jiang, and S. Sampath, Impact of Hgh Velocity Cold Spray Particles, J. Thermal Spray Technol., 1999, 8(4), p 559–564

    Article  Google Scholar 

  18. H. Assadi, F. Gärtner, T. Stoltenhoff, and H. Kreye, Bonding Mechanism in Cold Gas Spraying, Acta Mater., 2003, 51, p 4379–4394

    Article  CAS  Google Scholar 

  19. M. Grujicic, C.L. Zhao, W.S. DeRosset, and D. Helfritch, A diabatic Shear Instability Based Mechanism for Partcles/Substrate Bonding in the Cold-Gad Dynamic-Spray Process, Mater. Des., 2004, 25(8), p 681–688

    CAS  Google Scholar 

  20. C.J. Li and W.-Y. Li, Examination of the Critical Velocity for Deposition of Particles in Cold Spraying, Thermal Spray Connects: Explore Its Surfacing Potential, E. Lugscheider, Ed., May 2–4, 2005 (Basel, Switzerland), DVS Deutscher Verband für Schweißen, 2005, p 217–224

    Google Scholar 

  21. T. Schmidt, F. Gärtner, H. Assadi, and H. Kreye, Development of a Generalized Parameter Window for Cold Spray Deposition, Acta Mater, 2006, 54(3), p 729–742

    Article  CAS  Google Scholar 

  22. L. Ajdelsztajn, B. Jodoin, G.E. Kim, and J.M. Schoeung, Cold Spray Deposition of Nanocrystalline Aluminum Alloys, Metall. Mater. Trans. A 2005, 36(3), p 657–666

    Article  Google Scholar 

  23. R.S. Lima, J. Karthikeyan, C.M. Kay, J. Lindemann, and C.C. Berndt, Microstructural Characteristics of Cold-Sprayed Nanostructured WC-Co Coatings, Thin Solid Films, 2002, 416(1–2), p 129–135

    Article  CAS  Google Scholar 

  24. H.J. Kim, C.H. Lee, and S.Y. Hwang, Superhard Nano WC-12 %Co Coating by Cold Spray Deposition. Mater. Sci. Eng., A, 2005, 391(1–2), p 243–248

    Google Scholar 

  25. S. Yoon, H.J. Kim, and C.H. Lee, Deposition Behaviour of Bulk Amorphous NiTiZrSiSn According to the Kinetic and Thermal Energy Levels in the Kinetic Spray Process, Surf. Coat. Technol., 2006, 200 p 6022–6029

    Article  CAS  Google Scholar 

  26. Standard Test Method for Adhesion or Cohesion Strength of Thermal Spray Coatings, C 633-01, Annual Book of ASTM Standards, ASTM, 2001

  27. P. Heinrich, H. kreye, and T. Stoltenhoff, Laval Nozzle for Thermal and Kinetic Spraying, U.S. Patent 2005/0001075 A1, January 6, 2005

  28. J. Karthikeyan, International Status of Cold Spray Technology, Spraytime, 2005, 12(1), p 1–4

    Google Scholar 

  29. A.N. Papyrin, S.V. Klinkov and V.F. Kosarev, Effect of the Substrate Surface Activation on the Process of Cold Spray Coating Formation, Thermal Spray Connects: Explore Its Surfacing Potential E. Lugscheider, Ed., May 2–4, 2005, (Basel, Switzerland), D.V.S. Deutscher Verband für Schweißen, 2005, p 145–150

    Google Scholar 

  30. S.V. Klinkov, V.F. Kosarev, M. Rein, Cold Spray Deposition: Significance of Particle Impact Phenomena, Aerospace Sci. Technol., 9(7), p 582–591

  31. D. Grasme, First Serial Application of Cold Spraying for Coating Heat Sinks. Proc. 6 Kolloqium Hochgeschwindigkeits-Flammspritzen (Unterschleißheim, Germany), P. Heinrich, Ed., Gemeinschaft Thermisches Spritzen e.V., 2003, p 119–122

Download references

Author information

Authors and Affiliations

Authors

Additional information

The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and HW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gärtner, F., Stoltenhoff, T., Schmidt, T. et al. The cold spray process and its potential for industrial applications. J Therm Spray Tech 15, 223–232 (2006). https://doi.org/10.1361/105996306X108110

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1361/105996306X108110

Keywords

Navigation