Skip to main content
Log in

Columnar to equiaxed transition during alloy solidification

  • Published:
Science in China Series E: Technological Sciences Aims and scope Submit manuscript

Abstract

Considering the local linear superposition of the species and combining the calculation of phase diagram, the columnar and equiaxed growth behaviours are investigated systematically during solidification of multicomponent alloys. A theoretical model is developed to describe the columnar to equiaxed transition during multicomponent alloy solidification by taking account of the competition between nucleation and growth ahead of a dendrite array, which shows a good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hunt, J. D., Steady state columnar and equiaxed growth of dendrites and eutectic, Mater. Sci. Eng., 1984, 65: 75–83.

    Article  Google Scholar 

  2. Cockcroft, S. L., Rappaz, M., Mitchell, A. et al., An examination of some of the manufacturing problems of large single-crystal turbine blades for use in land-based gas turbines, Materials for Advanced Power Engineering (eds. Coutsouradis, J. et al.), New York: Kluwer Inc., 1994, 1161–1175.

    Google Scholar 

  3. Gäumann, M., Trivedi, R., Kurz, W., Nucleation ahead of the advancing interface in directional solidification, Mater. Sci. Eng., 1997, A226–228: 763–769.

    Google Scholar 

  4. Gäumann, M., Bezençon, C., Canalis, P. et al., Single-crystal laser deposition of superalloys: processing-microstructure maps, Acta Mater., 2001, 49: 1051–1062.

    Article  Google Scholar 

  5. Kurz, W., Giovanola, B., Trivedi, R., Theory of microstructural development during rapid solidification, Acta Metall. Mater., 1986, 34: 823–830.

    Article  Google Scholar 

  6. Lipton, J., Kurz, W., Trividi, R., Rapid dendrite growth in undercooled alloys, Acta Metall., 1987, 35: 957–964.

    Article  Google Scholar 

  7. Flood, S. C., Hunt, J. D., Columnar and equiaxed growth I. A model of a columnar front with a temperature dependent velocity, J. Crystal. Growth, 1987, 82: 543–551.

    Article  Google Scholar 

  8. Flood, S. C., Hunt, J. D., Columnar and equiaxed growth II. Equiaxed growth ahead of a columnar front, J. Crystal. Growth, 1987, 82: 552–560.

    Article  Google Scholar 

  9. Wang, C. Y., Beckermann, C., Prediction of columnar to equiaxed transition during diffusion-controlled dendritic alloy solidification, Metall. Mater. Trans. A, 1994, 25: 1081–1093.

    Article  Google Scholar 

  10. Gandin, C. A., From Constrained to unconstrained growth during directional solidification, Acta Mater. 2000, 48: 2483–2501.

    Article  Google Scholar 

  11. Brown, S. G. R., Spittle, J. A., Computer simulation of grain growth and macrostructure development during solidification, Mater. Sci. Technol., 1989, 5: 362–368.

    Google Scholar 

  12. Zhu, P., Smith, R. W., Dynamic simulation of crystal growth by Monte Carlo method I. Model description and kinetics, Acta Metall., 1992, 40: 683–692.

    Article  Google Scholar 

  13. Zhu, P., Smith, R. W., Dynamic simulation of crystal growth by Monte Carlo method II. Ingot microstructures, Acta Metall., 1992, 40: 3369–3379.

    Article  Google Scholar 

  14. Rappaz, M., Gandin, C. A., Probabilistic modeling of microstructure formation in solidification process, Acta Metall., 1993, 41: 345–360.

    Article  Google Scholar 

  15. Nastac, L., Stefanescu, D. M., Stochastic modelling of microstructure formation in solidification processes, Model. Simul. Mater. Sci. Engng., 1997, 5: 391–420.

    Article  Google Scholar 

  16. Nastac, L., Numerical modelling of solidification morphologies and segregation patterns in cast dendritic alloys, Acta Mater., 1999, 47: 4253–4262.

    Article  Google Scholar 

  17. Chen, S. L., Oldfield, W., Chang, Y. A. et al., Modeling solidification of turbine blades using theoretical phase relationships, Metall. Mater. Trans. A, 1994, 25: 1525–1533.

    Article  Google Scholar 

  18. Hunt, J. D., Lu, S. Z., Numerical modeling of cellular/dendritic array growth: spacing and structure predictions, Metall. Mater. Trans. A, 1996, 27: 611–623.

    Article  Google Scholar 

  19. Rappaz, M., David, S. A., Vitek, J. M. et al., Analysis of solidification microstructures in Fe−Ni−Cr single-crystal welds, Metall. Trans. A, 1990, 21: 1767–1782.

    Article  Google Scholar 

  20. Langer, J. S., Muller-krumbhaar, H., Theory of dendritic growth I. Elements of a stability analysis, Acta Metall., 1978, 26: 1681–1687.

    Article  Google Scholar 

  21. Ivantsov, G. P., Temperature field around a spherical, cylindrical and acircular crystal growth in a supercooled melt, Dokl. Akad. Nauk, SSSR, 1947, 58: 567–569.

    Google Scholar 

  22. Miettinen, J., Thermodynamic reassessment of Fe−Cr−Ni system with emphasis on the iron-rich corner, Calphad, 1999, 23: 231–248.

    Article  Google Scholar 

  23. Takeuchi, S., The Properties of Liquid Metals, London: Taylor and Francis, 1973, 343–347.

    Google Scholar 

  24. Porter, D. A., Easterling, K. E., Phase Transformations in Metal and Alloys, 2nd ed., London: Chapman and Hall, 1992.

    Google Scholar 

  25. Poole, W. J., Weinberg, F., Observations of columnar-toequiaxed transition in stainless steels, Metall. Mater. A, 1998, 29: 855–861.

    Article  Google Scholar 

  26. Guillermet, A.F., Assessment of the thermodynamic properties of the Ni−Co system, Z. Metallkde, 1987, 78: 639–647.

    Google Scholar 

  27. Oikawa, K., Qing, G. W., Ikeshoji, T. et al., Thermodynamic calculations of phase equilibria of Co−Cr−Pt ternary and magnetically induced phase separation in the FCC and HCP phase, Journal of Magnetism and Magnetic Materials, 2001, 236: 220–233.

    Article  Google Scholar 

  28. Brandes, E. A., Smithells Metalls Reference Book, 6th ed., Bodmin: Butterworths, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Xin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, X., Li, Y., Wang, M. et al. Columnar to equiaxed transition during alloy solidification. Sci. China Ser. E-Technol. Sci. 46, 475–489 (2003). https://doi.org/10.1360/02ye0337

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1360/02ye0337

Keywords

Navigation