Skip to main content

Modeling the Multicomponent Columar-to-Equiaxed Transition of Alloy 625

  • Chapter
CFD Modeling and Simulation in Materials Processing 2016

Part of the book series: The Minerals, Metals & Materials Series ((MMMS))

  • 1349 Accesses

Abstract

A numerical model has been developed to study the effect of columnar dendrite growth kinetics and solid grain movement on macrosegregation in static castings. The model solves continuum equations for mass, momentum, species, and energy conservation during multicomponent solidification. The columnar-to-equiaxed transition is modeled to explore its effect on macrosegregation of nickel alloy 625. The location of the CET and macrosegregation level of alloy 625 is affected by changing the thermal boundary conditions. As the heat transfer coefficient was increased the columnar volume fraction of the ingot increased and the macrosegregation level decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.D. Hunt: Mater. Sci. Eng., 1984, vol. 65, pp. 75–83.

    Article  Google Scholar 

  2. C.Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1994, vol. 25, pp. 1081–93.

    Article  Google Scholar 

  3. M.A. Martorano, C. Beckermann, and Ch. Gandin: Metall. Mater. Trans. A, 2003, vol. 34, pp. 1657–74.

    Article  Google Scholar 

  4. M. Wu and A. Ludwig: Acta Mater., 2009, vol. 57, pp. 5621–31.

    Article  Google Scholar 

  5. C.J. Vreeman, M.J.M. Krane, and F.P. Incropera: Int. J. Heat Mass Transf., 2000, vol. 43, pp. 677–86.

    Article  Google Scholar 

  6. C.J. Vreeman and F.P. Incropera: Numer. Heat Transf. Part B Fundam., 1999, vol. 36, pp. 1–14.

    Google Scholar 

  7. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, Washington DC, 1980.

    Google Scholar 

  8. I. Vusanovic and M.J.M. Krane: 3rd Int. Conf. Adv. Solidif. Process., 2011, vol. 27.

    Google Scholar 

  9. C.J. Vreeman, J.D. Schloz, and M.J.M. Krane: J. Heat Transfer, 2002, vol. 124, pp. 947–53.

    Article  Google Scholar 

  10. C.Y. Wang and C. Beckermann: Metall. Mater. Trans. A, 1993, vol. 24, pp. 2787–2802.

    Article  Google Scholar 

  11. J. Lipton, M.E. Glicksman, and W. Kurz: Mater. Sci. Eng., 1984, vol. 65, pp. 57–63.

    Article  Google Scholar 

  12. S D Felicelli, J C Heinrich, and D R Poirier: Metall. Trans. B, 1991, vol. 22, pp. 847–59.

    Article  Google Scholar 

  13. S. Ganesan, C.L. Chan, and D.R. Poirier: Mater. Sci. Eng. A, 1992, vol. 151, pp. 97–105.

    Article  Google Scholar 

  14. A.A. Zick and G.M. Homsy: J. Fluid Mech., 1982, vol. 115, pp. 13–26.

    Article  Google Scholar 

  15. M.C. Schneiderand C. Beckermann: Metall. Mater. Trans. A, 1995, vol. 26, pp. 2373–88.

    Article  Google Scholar 

  16. Wanhong Yang, Wei Chen, Keh-minn Chang, Sarwan Mannan, and John DeBarbadillo: in Superalloys 2000, T.M. Pollock, R.D. Kissinger, R.R. Bowman, K.A. Green, M. McLean, S. Olson, and J.J. Schirra, eds., TMS, 2000, pp. 75–84.

    Google Scholar 

  17. G Hoyle: Electroslag Processes, Elsevier Science Publishing Co. INC, New York, NY, 1983.

    Google Scholar 

  18. Special Metals Corporation: INCONEL Alloy 625, 2006.

    Google Scholar 

  19. T Iida and R Guthrie: The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1988.

    Google Scholar 

  20. H Jones: Rapid Solidification of Metals and Alloys, Institution of Metallurgists, London, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Minerals, Metals & Materials Society

About this chapter

Cite this chapter

Fezi, K., Krane, M.J.M. (2016). Modeling the Multicomponent Columar-to-Equiaxed Transition of Alloy 625. In: Nastac, L., et al. CFD Modeling and Simulation in Materials Processing 2016. The Minerals, Metals & Materials Series. Springer, Cham. https://doi.org/10.1007/978-3-319-65133-0_12

Download citation

Publish with us

Policies and ethics