Skip to main content
Log in

Development of a Convenient In Vitro Gel Diffusion Model for Predicting the In Vivo Performance of Subcutaneous Parenteral Formulations of Large and Small Molecules

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Parenteral delivery remains a compelling drug delivery route for both large- and small-molecule drugs and can bypass issues encountered with oral absorption. For injectable drug products, there is a strong patient preference for subcutaneous administration due to its convenience over intravenous infusion. However, in subcutaneous injection, in contrast to intravenous administration, the formulation is in contact with an extracellular matrix environment that behaves more like a gel than a fluid. This can impact the expected performance of a formulation. Since typical bulk fluid dissolution studies do not accurately simulate the subcutaneous environment, improved in vitro models to help better predict the behavior of the formulation are critical. Herein, we detail the development of a new model system consisting of a more physiologically relevant gel phase to simulate the rate of drug release and diffusion from a subcutaneous injection site using agarose hydrogels as a tissue mimic. This is coupled with continuous real-time data collection to accurately monitor drug diffusion. We show how this in vitro model can be used as an in vivo performance differentiator for different formulations of both large and small molecules. Thus, this model system can be used to improve optimization and understanding of new parenteral drug formulations in a rapid and convenient manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Porter CJH, Charman SA. Lymphatic transport of proteins after subcutaneous administration. J Pharm Sci. 2000;89(3):297–310.

    Article  CAS  PubMed  Google Scholar 

  2. Kinnunen HM, Mrsny RJ. Improving the outcomes of biopharmaceutical delivery via the subcutaneous route by understanding the chemical, physical and physiological properties of hte subcutaneous injection site. J Control Release. 2014;182:22–32.

    Article  CAS  PubMed  Google Scholar 

  3. Medlicott NJ, Waldron NA, Foster TP. Sustained release veterinary parenteral products. Adv Drug Deliv Rev. 2004;56(10):1345–65.

    Article  CAS  PubMed  Google Scholar 

  4. Richter WF, Bhansali SG, Morris ME. Mechanistic determinants of biotherapeutics absorption following SC administration. AAPS J. 2012;14:559–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Scott JE. Extracellular matrix, supramolecular organisation and shape. J Anat. 1995;187(Pt 2):259–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Levick JR. Flow through interstitium and other fibrous matrices. Q J Exp Physiol. 1987;72:409–37.

    Article  CAS  PubMed  Google Scholar 

  7. Graham DT, Pomeroy AR. An in-vitro test for the duration of action of insulin suspensions. J Pharm Pharmacol. 1984;36(7):427–30.

    Article  CAS  PubMed  Google Scholar 

  8. Wu Z, Tucker EG, Razzak M, Medlicott NJ. An in vitro kinetic method for detection of precipitation of poorly soluble drugs. Int J Pharm. 2005;304(1–2):1–3.

    CAS  PubMed  Google Scholar 

  9. Larsen C, Larsen SW, Jensen H, Yaghmur A, Ostergaard J. Role of in vitro release models in formulation development and quality control of parenteral depots. Expert Opin Drug Deliv. 2009;6:1283–95.

    Article  CAS  PubMed  Google Scholar 

  10. Wu Z, Hassan D, Shaw JP. In-vitro prediction of bioavailability following extravascular injection of poorly soluble drugs: an insight into clinical failure and the role of delivery systems. J Pharm Pharmacol. 2013;65:1429–39.

    Article  CAS  PubMed  Google Scholar 

  11. Marques MRC, Loebenberg R, Almukainzi M. Simulated biological fluids with possible application in dissolution testing. Dissolut Technol. 2011;18:15–28.

    Article  CAS  Google Scholar 

  12. Gietz U, Arvinte T, Mader E, Oroszlan P, Merkle HP. Sustained release of injectable zinc-recombinant hirudin suspensions: development and validation of in vitro release model. Eur J Pharm Biopharm. 1998;45:259–64.

    Article  CAS  PubMed  Google Scholar 

  13. Klose D, Azaroual N, Siepmann F, Vermeersch G, Siepmann J. Towards more realistic in vitro release measurement techniques for biodegradable microparticles. Pharm Res. 2009;26(3):691–9.

    Article  CAS  PubMed  Google Scholar 

  14. Pernodet N, Maaloum M, Tinland B. Pore size of agarose gels by atomic force microscopy. Electrophoresis. 1997;18:55–8.

    Article  CAS  PubMed  Google Scholar 

  15. Maaloum M, Pernodet N, Tinland B. Agarose gel structure using atomic force microscopy: gel concentration and ionic strength effects. Electrophoresis. 1998;19:1606–10.

    Article  CAS  PubMed  Google Scholar 

  16. Pluen A, Netti PA, Jain RK, Berk DA. Diffusion of macromolecules in agarose gels: comparison of linear and globular configurations. Biophys J. 1999;77:542–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leung DH, Lamberto DJ, Liu L, Kwong E, Nelson T, Rhodes T, et al. A new and improved method for the preparation of drug nanosuspension formulations using acoustic mixing technology. Int J Pharm. 2014;473(1–2):10–9.

    Article  CAS  PubMed  Google Scholar 

  18. Leung DH, Nelson TD, Rhodes TA, Kwong E, inventors. Merck Sharp & Dohme Corp., assignee. Nano-suspension process. USA patent US20140256818 A1. 2014 Sept 11, 2014.

  19. Sebti I, Blanc D, Carnet-Ripoche A, Saurel R, Coma V. Experimental study and modeling of nisin diffusion in agarose gels. J Food Eng. 2004;63:185–90.

    Article  Google Scholar 

  20. Johnson EM, Berk DA, Jain RK, Deen WM. Hindered diffusion in agarose gels: test of effective medium model. Biophys J. 1996;70:1017–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Allababidi S, Shah JC. Kinetics and mechanism of release from glyceryl monostearate-based implants: evaluation of release in a gel simulating in vivo implantation. J Pharm Sci. 1998;87:738–44.

    Article  CAS  PubMed  Google Scholar 

  22. Gillies GT, Wilhelm TD, Humphrey JAC, Fillmore HL, Holloway KL, Broaddus WC. A spinal cord surrogate with nanoscale porosity for in vitro simulations of restorative neurosurgical techniques. Nanotechnology. 2002;13:587–91.

    Article  Google Scholar 

  23. Pomfret R, Miranpuri G, Sillay K. The substitute brain and the potential of the gel model. Ann Neurol. 2013;20(3):118–22.

    CAS  Google Scholar 

  24. Holligan DL, Gillies GT, Dailey JP. Magnetic guidance of ferrofluidic nanoparticles in an in vitro model of intraocular retinal repair. Nanotechnology. 2003;14:661–6.

    Article  CAS  Google Scholar 

  25. Chen Z, Gillies G, Broaddus W, Prabhu S, Fillmore H, Mitchell R, et al. A realistic brain tissue phantom for intraparenchymal infusion studies. J Neurosurg. 2004;101:314–22.

    Article  PubMed  Google Scholar 

  26. Kinnunen HM, Sharma V, Contreras-Rojas LR, Yu Y, Alleman C, Sreedhara A, et al. A novel in vitro method to model the fate of subcutaneously administered biopharmaceuticals and associated formulation components. J Control Release. 2015;214:94–102.

    Article  CAS  PubMed  Google Scholar 

  27. Ye F, Larsen SW, Yaghmur A, Jensen H, Larsen C, Ostergaard J. Real-time UV imaging of piroxicam diffusion and distribution from oil solutions into gels mimicking the subcutaneous matrix. Eur J Pharm Sci. 2012;46:72–8.

    Article  CAS  PubMed  Google Scholar 

  28. Jensen SS, Jensen H, Moller EH, Cornett C, Siepmann F, Siepmann J, et al. In vitro release studies of insulin from lipid implants in solution and in a hydrogel matrix mimicking the subcutis. Eur J Pharm Sci. 2016;81:103–12.

    Article  CAS  PubMed  Google Scholar 

  29. Alvarez-Nunez FA, Yalkowsky SH. Buffer capacity and precipitation control of pH solubilized phenytoin formulations. Int J Pharm. 1999;185:45–9.

    Article  CAS  PubMed  Google Scholar 

  30. Soeborg T, Rasmussen CH, Mosekilde E, Colding-Jorgensen M. Absorption kinetics of insulin after subcutaneous administration. Eur J Pharm Sci. 2009;36:78–90.

    Article  CAS  PubMed  Google Scholar 

  31. Scholtz HE, Pretorius SG, Wessels DH, Becker RH. Pharmacokinetic and glucodynamic variability: assessment of insulin glargine, NPH insulin and insulin ultralente in healthy volunteers using a euglycaemic clamp technique. Diabetologia. 2005;48(10):1988–95.

    Article  CAS  PubMed  Google Scholar 

  32. Berenson DF, Weiss AR, Wan Z, Weiss M. Insulin analogs for the treatment of diabetes mellitus: therapeutic applications of protein engineering. Ann N Y Acad Sci. 2011;1243:E40–54.

    Article  PubMed  Google Scholar 

  33. Pandyarajan V, Weiss MA. Design of non-standard insulin analogs for the treatment of diabetes mellitus. Curr Diabetes Rep. 2012;12:697–704.

    Article  CAS  Google Scholar 

  34. http://www.webmd.com/diabetes/guide/diabetes-types-insulin. [cited]; Available from.

  35. Wu F, Bhansali SG, Law WC, Bergey EJ, Prasad PN, Morris ME. Fluorescence imaging of the lymph node uptake of proteins in mice after subcutaneous injection: molecular weight dependence. Pharm Res. 2012;29(7):1843–53.

    Article  CAS  PubMed  Google Scholar 

  36. Coppolino R, Coppolino S, Villari V. Study of the aggregation of insulin glargine by light scattering. J Pharm Sci. 2006;95:1029–34.

    Article  CAS  PubMed  Google Scholar 

  37. Tiong N, Elkordy AA. Effects of liquisolid formulations on dissolution of naproxen. Eur J Pharm Biopharm. 2009;73:373–84.

    Article  CAS  PubMed  Google Scholar 

  38. Tomlinson RV, Spires HR, Kent JS. Absorption, excretion and tissue residue in feedlot heifers injected with the synthetic prostaglandin, fenprostalene. J Anim Sci. 1984;59:164–9.

    Article  CAS  PubMed  Google Scholar 

  39. Kakemi K, Sezaki H, Okumura K, Kobayashi H, Furusawa S. Absorption of drugs from the skeletal muscle of the rat (3). Chem Pharm Bull. 1972;20:443–51.

    Article  CAS  PubMed  Google Scholar 

  40. Nippe S, Preube C, General S. Evaluation of the in vitro release and pharmacokinetics of parenteral injectable formulations for steroids. Eur J Pharm Biopharm. 2013;83:253–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Peter Wuelfing, Executive Director, Preclinical Development at Merck & Co., Inc. for his valuable comments and a thorough discussion on the findings presented in this manuscript, and Merck Research Laboratories for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis H. Leung.

Ethics declarations

Conflict of Interest

All studies were conducted under a protocol approved by the Merck & Co. Institutional Animal Care and Use Committees (IACUC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leung, D.H., Kapoor, Y., Alleyne, C. et al. Development of a Convenient In Vitro Gel Diffusion Model for Predicting the In Vivo Performance of Subcutaneous Parenteral Formulations of Large and Small Molecules. AAPS PharmSciTech 18, 2203–2213 (2017). https://doi.org/10.1208/s12249-016-0698-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0698-5

KEY WORDS

Navigation