Skip to main content
Log in

Poroelastic Characterization and Modeling of Subcutaneous Tissue Under Confined Compression

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Subcutaneous tissue mechanics are important for drug delivery. Yet, even though this material is poroelastic, its mechanical characterization has focused on its hyperelastic response. Moreover, advancement in subcutaneous drug delivery requires effective tissue mimics such as hydrogels for which similar gaps of poroelastic data exist. Porcine subcutaneous samples and gelatin hydrogels were tested under confined compression at physiological conditions and strain rates of 0.01%/s in 5% strain steps with 2600 s of stress relaxation between loading steps. Force-time data were used in an inverse finite element approach to obtain material parameters. Tissues and gels were modeled as porous neo-Hookean materials with properties specified via shear modulus, effective solid volume fraction, initial hydraulic permeability, permeability exponent, and normalized viscous relaxation moduli. The constitutive model was implemented into an isogeometric analysis (IGA) framework to study subcutaneous injection. Subcutaneous tissue exhibited an initial spike in stress due to compression of the solid and fluid pressure buildup, with rapid relaxation explained by fluid drainage, and longer time-scale relaxation explained by viscous dissipation. The inferred parameters aligned with the ranges reported in the literature. Hydraulic permeability, the most important parameter for drug delivery, was in the range \(k_0\in [0.142,0.203]\) mm\(^{4}\)/(N s). With these parameters, IGA simulations showed peak stresses due to a 1-mL injection to reach 48.8 kPa at the site of injection, decaying after drug volume disperses into the tissue. The poro-hyper-viscoelastic neo-Hookean model captures the confined compression response of subcutaneous tissue and gelatin hydrogels. IGA implementation enables predictive simulations of drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kivitz, A., S. Cohen, J. E. Dowd, W. Edwards, S. Thakker, F. R. Wellborne, C. L. Renz, and O. G. Segurado. Clinical assessment of pain, tolerability, and preference of an autoinjection pen versus a prefilled syringe for patient self-administration of the fully human, monoclonal antibody adalimumab: the touch trial. Clin. Ther. 28:1619–1629, 2006.

    Article  CAS  PubMed  Google Scholar 

  2. McDonald, T. A., M. L. Zepeda, M. J. Tomlinson, W. H. Bee, and I. A. Ivens. Subcutaneous administration of biotherapeutics: current experience in animal models. Curr. Opin. Mol. Ther. 12:461–470, 2010.

    CAS  PubMed  Google Scholar 

  3. Dychter, S. S., D. A. Gold, and M. F. Haller. Subcutaneous drug delivery: a route to increased safety, patient satisfaction, and reduced costs. J. Infusion Nurs. 35:154–160, 2012.

    Article  Google Scholar 

  4. de Lucio, M., M. Bures, A. M. Ardekani, P. P. Vlachos, and H. Gomez. Isogeometric analysis of subcutaneous injection of monoclonal antibodies. Comput. Methods Appl. Mech. Eng.373:113550, 2021.

    Article  ADS  MathSciNet  Google Scholar 

  5. Rahimi, E., S. Aramideh, D. Han, H. Gomez, and A. M. Ardekani. Transport and lymphatic uptake of monoclonal antibodies after subcutaneous injection. Microvasc. Res.139:104228, 2022.

    Article  CAS  PubMed  Google Scholar 

  6. Sun, Z., B. D. Gepner, P. S. Cottler, S.-H. Lee, and J. R. Kerrigan. In vitro mechanical characterization and modeling of subcutaneous adipose tissue: a comprehensive review. J. Biomech. Eng.143:070803, 2021.

    Article  PubMed  Google Scholar 

  7. Allmendinger, A., R. Mueller, E. Schwarb, M. Chipperfield, J. Huwyler, H.-C. Mahler, and S. Fischer. Measuring tissue back-pressure-in vivo injection forces during subcutaneous injection. Pharm. Res. 32:2229–2240, 2015.

    Article  CAS  PubMed  Google Scholar 

  8. Lane, B. A., K. A. Harmon, R. L. Goodwin, M. J. Yost, T. Shazly, and J. F. Eberth. Constitutive modeling of compressible type-i collagen hydrogels. Med. Eng. Phys. 53:39–48, 2018.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kopeček, J. Hydrogel biomaterials: a smart future? Biomaterials. 28:5185–5192, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Xu, Q., J. E. Torres, M. Hakim, P. M. Babiak, P. Pal, C. M. Battistoni, M. Nguyen, A. Panitch, L. Solorio, and J. C. Liu. Collagen-and hyaluronic acid-based hydrogels and their biomedical applications. Mater. Sci. Eng. R.146:100641, 2021.

    Article  Google Scholar 

  11. Wallace, D. G., and J. Rosenblatt. Collagen gel systems for sustained delivery and tissue engineering. Adv. Drug Deliv. Rev. 55:1631–1649, 2003.

    Article  CAS  PubMed  Google Scholar 

  12. Gutowska, A., B. Jeong, and M. Jasionowski. Injectable gels for tissue engineering. Anatomical Rec. 263:342–349, 2001.

    Article  CAS  Google Scholar 

  13. ContessiNegrini, N., P. Tarsini, M. Tanzi, and S. Farè. Chemically crosslinked gelatin hydrogels as scaffolding materials for adipose tissue engineering. J. Appl. Polym. Sci. 136:47104, 2019.

    Article  Google Scholar 

  14. Di Giuseppe, M., N. Law, B. Webb, R. A. Macrae, L. J. Liew, T. B. Sercombe, R. J. Dilley, and B. J. Doyle. Mechanical behaviour of alginate-gelatin hydrogels for 3d bioprinting. J. Mech. Behav. Biomed. Mater. 79:150–157, 2018.

    Article  PubMed  Google Scholar 

  15. Ateshian, G. A., W. Warden, J. Kim, R. Grelsamer, and V. C. Mow. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. J. Biomech. 30:1157–1164, 1997.

    Article  CAS  PubMed  Google Scholar 

  16. Soltz, M. A., and G. A. Ateshian. Interstitial fluid pressurization during confined compression cyclical loading of articular cartilage. Ann. Biomed. Eng. 28:150–159, 2000.

    Article  CAS  PubMed  Google Scholar 

  17. Boschetti, F., G. Pennati, F. Gervaso, G. M. Peretti, and G. Dubini. Biomechanical properties of human articular cartilage under compressive loads. Biorheology. 41:159–166, 2004.

    PubMed  Google Scholar 

  18. Park, S., R. Krishnan, S. B. Nicoll, and G. A. Ateshian. Cartilage interstitial fluid load support in unconfined compression. J. Biomech. 36:1785–1796, 2003.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mow, V. C., S. Kuei, W. M. Lai, and C. G. Armstrong. Biphasic creep and stress relaxation of articular cartilage in compression: theory and experiments. J. Biomech. Eng. 102:73–84, 1980.

    Article  CAS  PubMed  Google Scholar 

  20. Soltz, M. A., and G. A. Ateshian. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. J. Biomech. 31:927–934, 1998.

    Article  CAS  PubMed  Google Scholar 

  21. Calvo-Gallego, J. L., J. Domínguez, T. G. Cía, G. G. Ciriza, and J. Martínez-Reina. Comparison of different constitutive models to characterize the viscoelastic properties of human abdominal adipose tissue. A pilot study. J. Mech. Behav. Biomed. Mater. 80:293–302, 2018.

    Article  PubMed  Google Scholar 

  22. Sommer, G., M. Eder, L. Kovacs, H. Pathak, L. Bonitz, C. Mueller, P. Regitnig, and G. A. Holzapfel. Multiaxial mechanical properties and constitutive modeling of human adipose tissue: a basis for preoperative simulations in plastic and reconstructive surgery. Acta Biomater. 9:9036–9048, 2013.

    Article  CAS  PubMed  Google Scholar 

  23. Sree, V. D., J. D. Toaquiza-Tubon, J. Payne, L. Solorio, and A. B. Tepole. Damage and fracture mechanics of porcine subcutaneous tissue under tensile loading. Ann. Biomed. Eng. 1–14, 2023.

  24. Sun, Z., S.-H. Lee, B. D. Gepner, J. Rigby, J. J. Hallman, and J. R. Kerrigan. Comparison of porcine and human adipose tissue loading responses under dynamic compression and shear: a pilot study. J. Mech. Behav. Biomed. Mater.113:104112, 2021.

    Article  CAS  PubMed  Google Scholar 

  25. Beatty, M. F. Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples, 1987.

  26. Limbert, G. Skin Biophysics: From Experimental Characterisation to Advanced Modelling, Vol. 22, New York: Springer, 2019.

    Book  Google Scholar 

  27. Sree, V. D., A. Ardekani, P. Vlachos, and A. B. Tepole. The biomechanics of autoinjectorskin interactions during dynamic needle insertion. J. Biomech.134:110995, 2022.

    Article  PubMed  Google Scholar 

  28. Ateshian, G. A., and H. Wang. A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers. J. Biomech. 28:1341–1355, 1995.

    Article  CAS  PubMed  Google Scholar 

  29. Pierce, D. M., T. Ricken, and G. A. Holzapfel. A hyperelastic biphasic fibre-reinforced model of articular cartilage considering distributed collagen fibre orientations: continuum basis, computational aspects and applications. Comput. Methods Biomech. Biomed. Eng. 16:1344–1361, 2013.

    Article  Google Scholar 

  30. Shrestha, P., and B. Stoeber. Imaging fluid injections into soft biological tissue to extract permeability model parameters. Phys. Fluids.32:011905, 2020.

    Article  ADS  CAS  Google Scholar 

  31. Oomens, C., D. Van Campen, H. Grootenboer, and L. De Boer. Experimental and theoretical compression studies on porcine skin. In: Biomechanics: Current Interdisciplinary Research: Selected proceedings of the Fourth Meeting of the European Society of Biomechanics in collaboration with the European Society of Biomaterials, September 24–26, 1984, Davos, Switzerland, Springer, pp. 227–232.

  32. Wahlsten, A., M. Pensalfini, A. Stracuzzi, G. Restivo, R. Hopf, and E. Mazza. On the compressibility and poroelasticity of human and murine skin. Biomech. Model. Mechanobiol. 18:1079–1093, 2019.

    Article  PubMed  Google Scholar 

  33. Maas, S. A., B. J. Ellis, G. A. Ateshian, and J. A. Weiss. Febio: finite elements for biomechanics. J. Biomech. Eng.134:011005, 2012.

    Article  PubMed  Google Scholar 

  34. Weir Weiss, M.-J., P. Shrestha, R. Basak, and B. Stoeber. Poroelastic behavior of skin tissue in response to pressure driven flow. Phys. Fluids 35, 2023.

  35. Mow, V. C., M. H. Holmes, and W. M. Lai. Fluid transport and mechanical properties of articular cartilage: a review. J. Biomech. 17:377–394, 1984.

    Article  CAS  PubMed  Google Scholar 

  36. Holmes, M., and V. C. Mow. The nonlinear characteristics of soft gels and hydrated connective tissues in ultrafiltration. J. Biomech. 23:1145–1156, 1990.

    Article  CAS  PubMed  Google Scholar 

  37. Troyer, K. L., D. J. Estep, and C. M. Puttlitz. Viscoelastic effects during loading play an integral role in soft tissue mechanics. Acta Biomater. 8:234–243, 2012.

    Article  PubMed  Google Scholar 

  38. Fung, Y.-C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 2013.

    Google Scholar 

  39. Puso, M., and J. Weiss. Finite element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation, 1998.

  40. Nekouzadeh, A., K. M. Pryse, E. L. Elson, and G. M. Genin. A simplified approach to quasi-linear viscoelastic modeling. J. Biomech. 40:3070–3078, 2007.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pegg, D. E. The preservation of tissues for transplantation. Cell Tissue Bank. 7:349–358, 2006.

    Article  PubMed  Google Scholar 

  42. Sun, Z., B. D. Gepner, S.-H. Lee, M. L. Oyen, J. Rigby, P. S. Cottler, J. J. Hallman, and J. R. Kerrigan. Effect of temperature and freezing on human adipose tissue material properties characterized by high-rate indentation: puncture testing. J. Biomech. Eng.144:034502, 2022.

    PubMed  Google Scholar 

  43. Duginski, G. A., C. J. Ross, D. W. Laurence, C. H. Johns, and C.-H. Lee. An investigation of the effect of freezing storage on the biaxial mechanical properties of excised porcine tricuspid valve anterior leaflets. J. Mech. Behav. Biomed. Mater.101:103438, 2020.

    Article  CAS  PubMed  Google Scholar 

  44. Evin, M., P. Sudres, P. Weber, Y. Godio-Raboutet, P.-J. Arnoux, E. Wagnac, Y. Petit, and Y. Tillier. Experimental bi-axial tensile tests of spinal meningeal tissues and constitutive models comparison. Acta Biomater. 140:446–456, 2022.

    Article  CAS  PubMed  Google Scholar 

  45. Hughes, T., J. Cottrell, and Y. Bazilevs. Isogeometric analysis: cad, finite elements, nurbs, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194:4135–4195, 2005.

    Article  ADS  MathSciNet  Google Scholar 

  46. Wang, H., T. Hu, Y. Leng, M. de Lucio, and H. Gomez. Stabilized isogeometric formulation of the multi-network poroelasticity and transport model (mpet2) for subcutaneous injection of monoclonal antibodies. Comput. Methods Appl. Mech. Eng.417:116362, 2023.

    Article  ADS  Google Scholar 

  47. Wang, H., T. Hu, Y. Leng, M. de Lucio, and H. Gomez. MPET2: a multi-network poroelastic and transport theory for predicting absorption of monoclonal antibodies delivered by subcutaneous injection. Drug Deliv. 30:2163003, 2023.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jansen, K. E., C. H. Whiting, and G. M. Hulbert. A generalized-α method for integrating the filtered navier–stokes equations with a stabilized finite element method. Comput. Methods Appl. Mech. Eng. 190:305–319, 2000.

    Article  ADS  MathSciNet  Google Scholar 

  49. Chung, J., and G. M. Hulbert. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. J. Appl. Mech. 60:371–375, 1993.

    Article  ADS  MathSciNet  Google Scholar 

  50. Saad, Y., and M. H. Schultz. Gmres: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7:856–869, 1986.

    Article  MathSciNet  Google Scholar 

  51. Dalcin, L., N. Collier, P. Vignal, A. Côrtes, and V. Calo. Petiga: a framework for highperformance isogeometric analysis. Comput. Methods Appl. Mech. Eng. 308:151–181, 2016.

    Article  ADS  Google Scholar 

  52. Balay, S., S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, A. Dener, V. Eijkhout, W. D. Gropp, D. Karpeyev, D. Kaushik, M. G. Knepley, D. A. May, L. C. McInnes, R. T. Mills, T. Munson, K. Rupp, P. Sanan, B. F. Smith, S. Zampini, H. Zhang, and H. Zhang. PETSc Web page, https://www.mcs.anl.gov/petsc, 2019.

  53. Pensalfini, M., and A. B. Tepole. Mechano-biological and bio-mechanical pathways in cutaneous wound healing. PLoS Comput. Biol.19:e1010902, 2023.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. de Lucio, M., Y. Leng, A. Hans, I. Bilionis, M. Brindise, A. M. Ardekani, P. P. Vlachos, and H. Gomez. Modeling large-volume subcutaneous injection of monoclonal antibodies with anisotropic porohyperelastic models and data-driven tissue layer geometries. J. Mech. Behav. Biomed. Mater.138:105602, 2023.

    Article  PubMed  Google Scholar 

  55. de Lucio, M., Y. Leng, H. Wang, A. M. Ardekani, P. P. Vlachos, G. Shi, and H. Gomez. Computational modeling of the effect of skin pinch and stretch on subcutaneous injection of monoclonal antibodies using autoinjector devices. Biomech. Model. Mechanobiol. 22:1965–1982, 2023.

    Article  PubMed  Google Scholar 

  56. Heise, T., L. Nosek, S. Dellweg, E. Zijlstra, K. A. Præstmark, J. Kildegaard, G. Nielsen, and T. Sparre. Impact of injection speed and volume on perceived pain during subcutaneous injections into the abdomen and thigh: a single-centre, randomized controlled trial. Diabetes Obes. Metab. 16:971–976, 2014.

    Article  CAS  PubMed  Google Scholar 

  57. Præstmark, K. A., B. Stallknecht, M. L. Jensen, T. Sparre, N. B. Madsen, and J. Kildegaard. Injection technique and pen needle design affect leakage from skin after subcutaneous injections. J. Diabetes Sci. Technol. 10:914–922, 2016.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Toaquiza Tubon, J. D., O. Moreno-Flores, V. D. Sree, and A. B. Tepole. Anisotropic damage model for collagenous tissues and its application to model fracture and needle insertion mechanics. Biomech. Model. Mechanobiol. 1–16, 2022.

  59. Thomsen, M., A. Hernandez-Garcia, J. Mathiesen, M. Poulsen, D. N. Sørensen, L. Tarnow, and R. Feidenhans’l. Model study of the pressure build-up during subcutaneous injection. PLoS ONE.9:e104054, 2014.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  60. Leng, Y., A. M. Ardekani, and H. Gomez. A poro-viscoelastic model for the subcutaneous injection of monoclonal antibodies. J. Mech. Phys. Solids.155:104537, 2021.

    Article  MathSciNet  Google Scholar 

  61. Comley, K., and N. Fleck. The compressive response of porcine adipose tissue from low to high strain rate. Int. J. Impact Eng. 46:1–10, 2012.

    Article  Google Scholar 

  62. Comley, K., and N. A. Fleck. A micromechanical model for the young’s modulus of adipose tissue. Int. J. Solids Struct. 47:2982–2990, 2010.

    Article  Google Scholar 

  63. Estermann, S.-J., D. H. Pahr, and A. Reisinger. Material design of soft biological tissue replicas using viscoelastic micromechanical modelling. J. Mech. Behav. Biomed. Mater.125:104875, 2022.

    Article  CAS  PubMed  Google Scholar 

  64. Mitsak, A. G., A. M. Dunn, and S. J. Hollister. Mechanical characterization and non-linear elastic modeling of poly (glycerol sebacate) for soft tissue engineering. J. Mech. Behav. Biomed. Mater. 11:3–15, 2012.

    Article  CAS  PubMed  Google Scholar 

  65. Leng, Y., M. de Lucio, and H. Gomez. Using poro-elasticity to model the large deformation of tissue during subcutaneous injection. Comput. Methods Appl. Mech. Eng.384:113919, 2021.

    Article  ADS  MathSciNet  Google Scholar 

  66. Barry, S., and G. Aldis. Comparison of models for flow induced deformation of soft biological tissue. J. Biomech. 23:647–654, 1990.

    Article  CAS  PubMed  Google Scholar 

  67. Oftadeh, R., B. K. Connizzo, H. T. Nia, C. Ortiz, and A. J. Grodzinsky. Biological connective tissues exhibit viscoelastic and poroelastic behavior at different frequency regimes: application to tendon and skin biophysics. Acta Biomater. 70:249–259, 2018.

    Article  PubMed  Google Scholar 

  68. Ateshian, G. A., and J. A.Weiss. Anisotropic hydraulic permeability under finite deformation, 2010.

  69. Ateshian, G. A. Viscoelasticity using reactive constrained solid mixtures. J. Biomech. 48:941–947, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang, W., A. Capilnasiu, and D. Nordsletten. Comparative analysis of nonlinear viscoelastic models across common biomechanical experiments. J. Elast. 145:117–152, 2021.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Eli Lilly and Company.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: JBM and ABT; Methodology: JBM, JP, HM, ML, HG, LS, and ABT; Formal analysis and investigation: JBM, JP, HM, and ML; Writing—original draft preparation: JBM and ABT; Writing—review and editing: JBM, JP, HM, ML, HG, LS, and ABT; Funding acquisition: HG, LS, and ABT; Resources: HG, LS, and ABT; Supervision: ABT.

Corresponding author

Correspondence to Adrian B. Tepole.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest that affected this work. The work described herein was conducted during Mazin Hakim's graduate studies at Purdue University. Mazin Hakim is currently an employee and common stock owner of Eli Lilly and Company.

Citation Diversity

Recent work in several fields of science has identified a bias in citation practices such that papers from women and other minority scholars are under cited relative to the number of papers in the field. We recognize this bias and have worked diligently to ensure that we are referencing appropriate papers with fair gender and racial author inclusion.

Additional information

Associate Editor Joel Stitzel oversaw review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1047 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barsimantov, J., Payne, J., de Lucio, M. et al. Poroelastic Characterization and Modeling of Subcutaneous Tissue Under Confined Compression. Ann Biomed Eng (2024). https://doi.org/10.1007/s10439-024-03477-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10439-024-03477-1

Keywords

Navigation