Skip to main content

Advertisement

Log in

Controlled Release of Vanadium from a Composite Scaffold Stimulates Mesenchymal Stem Cell Osteochondrogenesis

  • Research Article
  • Theme: Recent Advances in Musculoskeletal Tissue Engineering
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Large bone defects often require the use of autograft, allograft, or synthetic bone graft augmentation; however, these treatments can result in delayed osseous integration. A tissue engineering strategy would be the use of a scaffold that could promote the normal fracture healing process of endochondral ossification, where an intermediate cartilage phase is later transformed to bone. This study investigated vanadyl acetylacetonate (VAC), an insulin mimetic, combined with a fibrous composite scaffold, consisting of polycaprolactone with nanoparticles of hydroxyapatite and beta-tricalcium phosphate, as a potential bone tissue engineering scaffold. The differentiation of human mesenchymal stem cells (MSCs) was evaluated on 0.05 and 0.025 wt% VAC containing composite scaffolds (VAC composites) in vitro using three different induction media: osteogenic (OS), chondrogenic (CCM), and chondrogenic/osteogenic (C/O) media, which mimics endochondral ossification. The controlled release of VAC was achieved over 28 days for the VAC composites, where approximately 30% of the VAC was released over this period. MSCs cultured on the VAC composites in C/O media had increased alkaline phosphatase activity, osteocalcin production, and collagen synthesis over the composite scaffold without VAC. In addition, gene expressions for chondrogenesis (Sox9) and hypertrophic markers (VEGF, MMP-13, and collagen X) were the highest on VAC composites. Almost a 1000-fold increase in VEGF gene expression and VEGF formation, as indicated by immunostaining, was achieved for cells cultured on VAC composites in C/O media, suggesting VAC will promote angiogenesis in vivo. These results demonstrate the potential of VAC composite scaffolds in supporting endochondral ossification as a bone tissue engineering strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hu Y-C. Bone and cartilage tissue engineering. Gene therapy for cartilage and bone tissue engineering. SpringerBriefs in bioengineering. Berlin: Springer; 2014. p. 1–15.

    Google Scholar 

  2. Vanadium: the versatile metal: American Chemical Society; 2007. 502 p.

  3. Kokubo T. Bioactive glass ceramics: properties and applications. Biomaterials. 1991;12(2):155–63.

    Article  CAS  PubMed  Google Scholar 

  4. Jones JR, Lin S, Yue S, Lee PD, Hanna JV, Smith ME, et al. Bioactive glass scaffolds for bone regeneration and their hierarchical characterisation. Proc Inst Mech Eng H J Eng Med. 2010;224(12):1373–87.

    Article  CAS  Google Scholar 

  5. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(18):3413–31.

    Article  CAS  PubMed  Google Scholar 

  6. Arinzeh TL, Peter SJ, Archambault MP, Van Den Bos C, Gordon S, Kraus K, et al. Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am. 2003;85(10):1927–35.

    Article  PubMed  Google Scholar 

  7. Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev. 2012;64(12):1292–309.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Habraken WJEM, Wolke JGC, Jansen JA. Ceramic composites as matrices and scaffolds for drug delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59:234–48.

    Article  CAS  PubMed  Google Scholar 

  9. Blackwood KA, Bock N, Dargaville TR, Ann Woodruff M. Scaffolds for growth factor delivery as applied to bone tissue engineering. 2012. 25 p.

  10. Shehzad S. The potential effect of vanadium compounds on glucose-6-phosphatase. Biosci Horiz. 2013;6.

  11. Ji W, Sun Y, Yang F, van den Beucken JJJP, Fan M, Chen Z, et al. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm Res. 2011;28(6):1259–72.

    Article  CAS  PubMed  Google Scholar 

  12. Bose S, Tarafder S. Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomater. 2012;8:1401–21.

    Article  CAS  PubMed  Google Scholar 

  13. Nie H, Wang C-H. Fabrication and characterization of PLGA/HAp composite scaffolds for delivery of BMP-2 plasmid DNA. J Controlled Release Off J Controlled Release Soc. 2007;120:111–21.

    Article  CAS  Google Scholar 

  14. Sahoo S, Ang LT, Goh JC-H, Toh S-L. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res A. 2010;93A(4):1539–50.

    CAS  Google Scholar 

  15. Whitaker MJ, Quirk RA, Howdle SM, Shakesheff KM. Growth factor release from tissue engineering scaffolds. J Pharm Pharmacol. 2001;53(11):1427–37.

    Article  CAS  PubMed  Google Scholar 

  16. Srivastava AK, Mehdi MZ. Insulino-mimetic and anti-diabetic effects of vanadium compounds. Diabet Med. 2005;22(1):2–13.

    Article  CAS  PubMed  Google Scholar 

  17. Barrio DA, Cattáneo ER, Apezteguía MC, Etcheverry SB. Vanadyl(IV) complexes with saccharides. Bioactivity in osteoblast-like cells in culture. Can J Physiol Pharmacol. 2006;84(7):765–75. This paper is one of a selection of papers published in this special issue, entitled Second Messengers and Phosphoproteins—12th International conference

    Article  CAS  PubMed  Google Scholar 

  18. Barrio DA, Etcheverry SB. Vanadium and bone development: putative signaling pathways. Can J Physiol Pharmacol. 2006;84(7):677–86.

    Article  CAS  PubMed  Google Scholar 

  19. Barrio DA, Etcheverry SB. Potential use of vanadium compounds in therapeutics. Curr Med Chem. 2010;17(31):3632–42.

    Article  CAS  PubMed  Google Scholar 

  20. Paglia DN, Wey A, Hreha J, Park AG, Cunningham C, Uko L, et al. Local vanadium release from a calcium sulfate carrier accelerates fracture healing. J Orthop Res. 2014;32(5):727–34.

    Article  CAS  PubMed  Google Scholar 

  21. Paglia DN, Wey A, Park AG, Breitbart EA, Mehta SK, Bogden JD, et al. The effects of local vanadium treatment on angiogenesis and chondrogenesis during fracture healing. J Orthop Res. 2012;30(12):1971–8.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang W, Shen X, Wan C, Zhao Q, Zhang L, Zhou Q, et al. Effects of insulin and insulin-like growth factor 1 on osteoblast proliferation and differentiation: differential signalling via Akt and ERK. Cell Biochem Funct. 2012;30(4):297–302.

    Article  CAS  PubMed  Google Scholar 

  23. Fulzele K, Clemens TL. Novel functions for insulin in bone. Bone. 2012;50(2):452–6.

    Article  CAS  PubMed  Google Scholar 

  24. Fukumoto S, Martin TJ. Bone as an endocrine organ. Trend Endocrinol Metab. 2009;20(5):230–6.

    Article  CAS  Google Scholar 

  25. Williams A, Gillis A, McKenzie C, Po B, Sharma L, Micheli L, et al. Glycosaminoglycan distribution in cartilage as determined by delayed gadolinium-enhanced MRI of cartilage (dGEMRIC): potential clinical applications. Am J Roentgenol. 2004;182(1):167–72.

    Article  Google Scholar 

  26. Zee T, Settembre C, Levine RL, Karsenty G. T-cell protein tyrosine phosphatase regulates bone resorption and whole-body insulin sensitivity through its expression in osteoblasts. Mol Cell Biol. 2012;32(6):1080–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Ferron M, Wei J, Yoshizawa T, Fattore AD, DePinho RA, Teti A, et al. Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell. 2010;142(2):296–308.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Guo S. Insulin signaling, resistance, and the metabolic syndrome: insights from mouse models to disease mechanisms. J Endocrinol. 2014;220(2):T1–T23.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Koerner JD, Yalamanchili P, Munoz W, Uko L, Chaudhary SB, Lin SS, et al. The effects of local insulin application to lumbar spinal fusions in a rat model. Spine J. 2013;13(1):22–31.

    Article  PubMed  Google Scholar 

  30. Park AG, Paglia DN, Al-Zube L, Hreha J, Vaidya S, Breitbart E, et al. Local insulin therapy affects fracture healing in a rat model. J Orthop Res. 2013;31(5):776–82.

    Article  CAS  PubMed  Google Scholar 

  31. Paglia DN, Wey A, Breitbart EA, Faiwiszewski J, Mehta SK, Al-Zube L, et al. Effects of local insulin delivery on subperiosteal angiogenesis and mineralized tissue formation during fracture healing. J Orthop Res. 2013;31(5):783–91.

    Article  CAS  PubMed  Google Scholar 

  32. Schmid AC, Byrne RD, Vilar R, Woscholski R. Bisperoxovanadium compounds are potent PTEN inhibitors. FEBS Lett. 2004;566(1–3):35–8.

    Article  CAS  PubMed  Google Scholar 

  33. Mak LH, Vilar R, Woscholski R. Characterisation of the PTEN inhibitor VO-OHpic. J Chem Biol. 2010;3(4):157–63.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Patti A, Gennari L, Merlotti D, Dotta F, Nuti R. Endocrine actions of osteocalcin. Int J Endocrinol. 2013;2013:846480.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Rodan GA. Bone homeostasis. Proc Natl Acad Sci U S A. 1998;95(23):13361–2.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Freeman FE, McNamara L. Endochondral priming: a developmental engineering strategy for bone tissue regeneration. Tissue Eng B Rev. 2016.

  38. Freeman FE, Stevens HY, Owens P, Guldberg RE, McNamara LM. Osteogenic differentiation of mesenchymal stem cells by mimicking the cellular niche of the endochondral template. Tissue Eng Part A. 2016;22(19–20):1176–90.

    Article  CAS  PubMed  Google Scholar 

  39. Farrell E, Both SK, Odörfer KI, Koevoet W, Kops N, O'Brien FJ, et al. In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Musculoskelet Disord. 2011;12:31.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Farrell E, van der Jagt OP, Koevoet W, Kops N, Van Manen CJ, Hellingman CA, et al. Chondrogenic priming of human bone marrow stromal cells: a better route to bone repair? Tissue Eng Part C Methods. 2008;15(2):285–95.

    Article  Google Scholar 

  41. Bahney CS, Hu DP, Taylor AJ, Ferro F, Britz HM, Hallgrimsson B, et al. Stem cell-derived endochondral cartilage stimulates bone healing by tissue transformation. J Bone Miner Res. 2014;29(5):1269–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Yang W, Both SK, van Osch G, Wang Y, Jansen J, Yang F. Performance of different three-dimensional scaffolds for in vivo endochondral bone generation. Bone regeneration: from intramembranous to endochondral pathway. 2014:81.

  43. Dennis SC, Berkland CJ, Bonewald LF, Detamore MS. Endochondral ossification for enhancing bone regeneration: converging native extracellular matrix biomaterials and developmental engineering in vivo. Tissue Eng Part B Rev. 2014;21(3):247–66.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Yang W, Both SK, van Osch GJVM, Wang Y, Jansen JA, Yang F. Effects of in vitro chondrogenic priming time of bone-marrow-derived mesenchymal stromal cells on in vivo endochondral bone formation. Acta Biomater. 2015;13:254–65.

    Article  CAS  PubMed  Google Scholar 

  45. Yang W, Yang F, Wang Y, Both SK, Jansen JA. In vivo bone generation via the endochondral pathway on three-dimensional electrospun fibers. Acta Biomater. 2013;9(1):4505–12.

    Article  CAS  PubMed  Google Scholar 

  46. Patlolla A, Arinzeh TL. Evaluating apatite formation and osteogenic activity of electrospun composites for bone tissue engineering. Biotechnol Bioeng. 2014;111(5):1000–17.

    Article  CAS  PubMed  Google Scholar 

  47. Shanmugasundaram S, Chaudhry H, Arinzeh TL. Microscale versus nanoscale scaffold architecture for mesenchymal stem cell chondrogenesis. Tissue Eng Part A. 2010;17(5–6):831–40.

    PubMed  Google Scholar 

  48. Patlolla A, Collins G, Livingston Arinzeh T. Solvent-dependent properties of electrospun fibrous composites for bone tissue regeneration. Acta Biomater. 2010;6(1):90–101.

    Article  CAS  PubMed  Google Scholar 

  49. Briggs T, Matos J, Collins G, Arinzeh TL. Evaluating protein incorporation and release in electrospun composite scaffolds for bone tissue engineering applications. J Biomed Mater Res A. 2015;103(10):3117–27.

    Article  CAS  PubMed  Google Scholar 

  50. Deans RJ, Moseley AB. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol. 2000;28(8):875–84.

    Article  CAS  PubMed  Google Scholar 

  51. van der Kraan PM, van den Berg WB. Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthr Cartil. 2012;20(3):223–32.

    Article  PubMed  Google Scholar 

  52. Miao D, Scutt A. Histochemical localization of alkaline phosphatase activity in decalcified bone and cartilage. J Histochem Cytochem. 2002;50(3):333–40.

    Article  CAS  PubMed  Google Scholar 

  53. Giuliani N, Lisignoli G, Magnani M, Racano C, Bolzoni M, Dalla Palma B, et al. New insights into osteogenic and chondrogenic differentiation of human bone marrow mesenchymal stem cells and their potential clinical applications for bone regeneration in pediatric orthopaedics. 2013. 11 p.

  54. Quintana L, Zur Nieden NI, Semino CE. Morphogenetic and regulatory mechanisms during developmental chondrogenesis: new paradigms for cartilage tissue engineering. Tissue Eng Part B Rev. 2008;15(1):29–41.

    Article  PubMed Central  Google Scholar 

  55. Kawakami Y, Tsuda M, Takahashi S, Taniguchi N, Esteban CR, Zemmyo M, et al. Transcriptional coactivator PGC-1α regulates chondrogenesis via association with Sox9. Proc Natl Acad Sci U S A. 2005;102(7):2414–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Akiyama H. Control of chondrogenesis by the transcription factor Sox9. Mod Rheumatol. 2008;18(3):213–9.

    Article  CAS  PubMed  Google Scholar 

  57. Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells: biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther. 2007;9(1):204.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Chen Q, Shou P, Zheng C, Jiang M, Cao G, Yang Q, et al. Fate decision of mesenchymal stem cells: adipocytes or osteoblasts [quest]. Cell Death Differ. 2016;23(7):1128–39.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, MacArthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466(7308):829–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Inada M, Wang Y, Byrne MH, Rahman MU, Miyaura C, López-Otín C, et al. Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci U S A. 2004;101(49):17192–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Hartmann C. A Wnt canon orchestrating osteoblastogenesis. Trends Cell Biol. 2006;16(3):151–8.

    Article  CAS  PubMed  Google Scholar 

  62. D’Angelo M, Yan Z, Nooreyazdan M, Pacifici M, Sarment DS, Billings PC, et al. MMP-13 is induced during chondrocyte hypertrophy. J Cell Biochem. 2000;77(4):678–93.

    Article  PubMed  Google Scholar 

  63. Gerber H-P, Vu TH, Ryan AM, Kowalski J, Werb Z, Ferrara N. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med. 1999;5(6):623–8.

    Article  CAS  PubMed  Google Scholar 

  64. Dai J, Rabie ABM. VEGF: an essential mediator of both angiogenesis and endochondral ossification. J Dent Res. 2007;86(10):937–50.

    Article  CAS  PubMed  Google Scholar 

  65. Yang Y-Q, Tan Y-Y, Wong R, Wenden A, Zhang L-K, Rabie ABM. The role of vascular endothelial growth factor in ossification. In J Oral Sci. 2012;4(2):64–8.

    Article  CAS  Google Scholar 

  66. Livak KJ, Schmittgen TD. Analysis of relative Gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  67. Ji W, Yang F, Seyednejad H, Chen Z, Hennink WE, Anderson JM, et al. Biocompatibility and degradation characteristics of PLGA-based electrospun nanofibrous scaffolds with nanoapatite incorporation. Biomaterials. 2012;33(28):6604–14.

    Article  CAS  PubMed  Google Scholar 

  68. Bose S, Roy M, Bandyopadhyay A. Recent advances in bone tissue engineering scaffolds. Trends Biotechnol. 2012;30(10):546–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Blackwood KA, Bock N, Dargaville TR, Ann Woodruff M. Scaffolds for growth factor delivery as applied to bone tissue engineering. Int J Polymer Sci. 2012;2012:174942.

    Article  Google Scholar 

  70. Armentano I, Dottori M, Fortunati E, Mattioli S, Kenny JM. Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polym Degrad Stab. 2010;95(11):2126–46.

    Article  CAS  Google Scholar 

  71. Srouji S, Ben-David D, Lotan R, Livne E, Avrahami R, Zussman E. Slow-release human recombinant bone morphogenetic protein-2 embedded within electrospun scaffolds for regeneration of bone defect: in vitro and in vivo evaluation. Tissue Eng Part A. 2010;17(3–4):269–77.

    PubMed  Google Scholar 

  72. Nauth A, Ristevski B, Li R, Schemitsch EH. Growth factors and bone regeneration: how much bone can we expect? Injury. 2011;42:574–9.

    Article  PubMed  Google Scholar 

  73. Mouriño V, Cattalini JP, Boccaccini AR. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface. 2012;9(68):401–19.

    Article  PubMed  Google Scholar 

  74. Martins A, Duarte ARC, Faria S, Marques AP, Reis RL, Neves NM. Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. Biomaterials. 2010;31(22):5875–85.

    Article  CAS  PubMed  Google Scholar 

  75. Ingavle GC, Leach JK. Advancements in electrospinning of polymeric nanofibrous scaffolds for tissue engineering. Tissue Eng Part B Rev. 2013;20(4):277–93.

    Article  PubMed  Google Scholar 

  76. Etcheverry SB, Crans DC, Keramidas AD, Cortizo AM. Insulin-mimetic action of vanadium compounds on osteoblast-like cells in culture. Arch Biochem Biophys. 1997;338(1):7–14.

    Article  CAS  PubMed  Google Scholar 

  77. Cortizo AM, Bruzzone L, Molinuevo S, Etcheverry SB. A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell lines. Toxicology. 2000;147(2):89–99.

    Article  CAS  PubMed  Google Scholar 

  78. Etcheverry SB, Barrio DA, Cortizo AM, Williams PAM. Three new vanadyl(IV) complexes with non-steroidal anti-inflammatory drugs (ibuprofen, naproxen and tolmetin). Bioactivity on osteoblast-like cells in culture. J Inorg Biochem. 2002;88(1):94–100.

    Article  CAS  PubMed  Google Scholar 

  79. Cortizo AM, Molinuevo MS, Barrio DA, Bruzzone L. Osteogenic activity of vanadyl(IV)–ascorbate complex: evaluation of its mechanism of action. Int J Biochem Cell Biol. 2006;38(7):1171–80.

    Article  CAS  PubMed  Google Scholar 

  80. Molinuevo M, Barrio D, Cortizo A, Etcheverry S. Antitumoral properties of two new vanadyl(IV) complexes in osteoblasts in culture: role of apoptosis and oxidative stress. Cancer Chemother Pharmacol. 2004;53(2):163–72.

    Article  CAS  PubMed  Google Scholar 

  81. Tchetina EV. Developmental mechanisms in articular cartilage degradation in osteoarthritis. Arthritis. 2011;2011:683970.

    Article  PubMed  Google Scholar 

  82. Xu Y, Pritzker K, Cruz T. Characterization of chondrocyte alkaline phosphatase as a potential mediator in the dissolution of calcium pyrophosphate dihydrate crystals. J Rheumatol. 1994;21(5):912–9.

    CAS  PubMed  Google Scholar 

  83. Mueller MB, Tuan RS. Functional characterization of hypertrophy in chondrogenesis of human mesenchymal stem cells. Arthritis Rheum. 2008;58(5):1377–88.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  84. Lian JB, McKee MD, Todd AM, Gerstenfeld LC. Induction of bone-related proteins, osteocalcin and osteopontin, and their matrix ultrastructural localization with development of chondrocyte hypertrophy in vitro. J Cell Biochem. 1993;52(2):206–19.

    Article  CAS  PubMed  Google Scholar 

  85. Fossett E, Khan WS, Longo UG, Smitham PJ. Effect of age and gender on cell proliferation and cell surface characterization of synovial fat pad derived mesenchymal stem cells. J Orthop Res. 2012;30(7):1013–8.

    Article  PubMed  Google Scholar 

  86. Jiang M, Wang X, Liu H, Zhou L, Jiang T, Zhou H, et al. Bone formation in adipose-derived stem cells isolated from elderly patients with osteoporosis: a preliminary study. Cell Biol Int. 2014;38(1):97–105.

    Article  PubMed  Google Scholar 

  87. Hattori T, Müller C, Gebhard S, Bauer E, Pausch F, Schlund B, et al. SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development. 2010;137(6):901–11.

    Article  CAS  PubMed  Google Scholar 

  88. Zoch ML, Clemens TL, Riddle RC. New insights into the biology of osteocalcin. Bone. 2016;82:42–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the support from the Coulter Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Treena Livingston Arinzeh.

Additional information

Guest Editor: Aliasger K. Salem

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schussler, S.D., Uske, K., Marwah, P. et al. Controlled Release of Vanadium from a Composite Scaffold Stimulates Mesenchymal Stem Cell Osteochondrogenesis. AAPS J 19, 1017–1028 (2017). https://doi.org/10.1208/s12248-017-0073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-017-0073-9

KEY WORDS

Navigation