Skip to main content

Advertisement

Log in

Characterisation of the PTEN inhibitor VO-OHpic

  • Short Communication
  • Published:
Journal of Chemical Biology

Abstract

PTEN (phosphatase and tensin homologue deleted on chromosome 10) is a phosphatidylinositol triphosphate 3-phosphatase that counteracts phosphoinositide 3-kinases and has subsequently been implied as a valuable drug target for diabetes and cancer. Recently, we demonstrated that VO-OHpic is an extremely potent inhibitor of PTEN with nanomolar affinity in vitro and in vivo. Given the importance of this inhibitor for future drug design and development, its mode of action needed to be elucidated. It was discovered that inhibition of recombinant PTEN by VO-OHpic is fully reversible. Both K m and V max are affected by VO-OHpic, demonstrating a noncompetitive inhibition of PTEN. The inhibition constants K ic and K iu were determined to be 27 ± 6 and 45 ± 11 nM, respectively. Using the artificial phosphatase substrate 3-O-methylfluorescein phosphate (OMFP) or the physiological substrate phosphatidylinositol 3,4,5-triphosphate (PIP3) comparable parameters were obtained suggesting that OMFP is a suitable substrate for PTEN inhibition studies and PTEN drug screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang SI, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner SH, Giovanella BC, Ittmann M, Tycko B, Hibshoosh H, Wigler MH, Parsons R (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275(5308):1943–1947

    Article  CAS  Google Scholar 

  2. Steck PA, Pershouse MA, Jasser SA, Yung WKA, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DHR, Tavtigian SV (1997) Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15(4):356–362

    Article  CAS  Google Scholar 

  3. Chalhoub N, Baker SJ (2009) PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol: Mech Dis 4(1):127–150

    Article  CAS  Google Scholar 

  4. Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate. J Biol Chem 273(22):13375–13378

    Article  CAS  Google Scholar 

  5. Carracedo A, Pandolfi PP (2008) The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27(41):5527–5541

    Article  CAS  Google Scholar 

  6. Blanco-Aparicio C, Renner O, Leal JFM, Carnero A (2007) PTEN, more than the AKT pathway. Carcinogenesis 28(7):1379–1386

    Article  CAS  Google Scholar 

  7. Zhao M (2007) PTEN: a promising pharmacological target to enhance epithelial wound healing. Br J Pharmacol 152(8):1141–1144

    Article  CAS  Google Scholar 

  8. Lai JP, Dalton JT, Knoell DL (2007) Phosphatase and tensin homologue deleted on chromosome ten (PTEN) as a molecular target in lung epithelial wound repair. Br J Pharmacol 152(8):1172–1184

    Article  CAS  Google Scholar 

  9. Chang N, El-Hayek YH, Gomez E, Wan Q (2007) Phosphatase PTEN in neuronal injury and brain disorders. Trends Neurosci 30(11):581–586

    Article  CAS  Google Scholar 

  10. Salmena L, Carracedo A, Pandolfi PP (2008) Tenets of PTEN tumor suppression. Cell 133(3):403–414

    Article  CAS  Google Scholar 

  11. Heyliger C, Tahiliani A, McNeill J (1985) Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science 227(4693):1474–1477

    Article  CAS  Google Scholar 

  12. Rumora L, Shaver A, Zanic-Grubisic T, Maysinger D (2001) Differential regulation of JNK activation and MKP-1 expression by peroxovanadium complexes. Neurochem Int 38(4):341–347

    Article  CAS  Google Scholar 

  13. Bevan AP, Burgess JW, Yale JF, Drake PG, Lachance D, Baquiran G, Shaver A, Posner BI (1996) In vivo insulin mimetic effects of pV compounds: role for tissue targeting in determining potency (vol 31, pg E60, 1995). Am J Physiol Endocrinol Metabol 33(6):U17–U

    Google Scholar 

  14. Schmid AC, Byrne RD, Vilar R, Woscholski R (2004) Bisperoxovanadium compounds are potent PTEN inhibitors. FEBS Lett 566(1–3):35–38

    Article  CAS  Google Scholar 

  15. Rickle A, Behbahani H, Ankarcrona M, Winblad B, Cowburn RF (2006) PTEN, Akt, and GSK3beta signalling in rat primary cortical neuronal cultures following tumor necrosis factor-alpha and trans-4-hydroxy-2-nonenal treatments. J Neurosci Res 84(3):596–605

    Article  CAS  Google Scholar 

  16. Wang XT, Pei DS, Xu J, Guan QH, Sun YF, Liu XM, Zhang GY (2007) Opposing effects of bad phosphorylation at two distinct sites by Akt1 and JNK1/2 on ischemic brain injury. Cell Signal 19(9):1844–1856

    Article  CAS  Google Scholar 

  17. Rosivatz E, Matthews JG, McDonald NQ, Mulet X, Ho KK, Lossi N, Schmid AC, Mirabelli M, Pomeranz KM, Erneux C, Lam EWF, Vilar R, Woscholski R (2006) A small-molecule inhibitor for phosphatase and tensin homologue deleted on chromosome 10 (PTEN). ACS Chem Biol 1(12):780–790

    Article  CAS  Google Scholar 

  18. Papakonstanti EA, Ridley AJ, Vanhaesebroeck B (2007) The p110 delta isoform of PI 3-kinase negatively controls RhoA and PTEN. EMBO J 26(13):3050–3061

    Article  CAS  Google Scholar 

  19. Alimonti A, Nardella C, Chen Z, Clohessy JG, Carracedo A, Trotman LC, Cheng K, Varmeh S, Kozma SC, Thomas G, Rosivatz E, Woscholski R, Cognetti F, Scher HI, Pandolfi PP (2010) A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J Clin Investig 120(3):681–693

    Article  CAS  Google Scholar 

  20. Bagossi P, Kádas J, Miklóssy G, Boross P, Weber IT, Tözsér J (2004) Development of a microtiter plate fluorescent assay for inhibition studies on the HTLV-1 and HIV-1 proteinases. J Virol Meth 119(2):87–93

    Article  CAS  Google Scholar 

  21. Liu Y, Kati W, Chen C-M, Tripathi R, Molla A, Kohlbrenner W (1999) Use of a fluorescence plate reader for measuring kinetic parameters with inner filter effect correction. Anal Biochem 267(2):331–335

    Article  CAS  Google Scholar 

  22. Nakai M, Sekiguchi F, Obata M, Ohtsuki C, Adachi Y, Sakurai H, Orvig C, Rehder D, Yano S (2005) Synthesis and insulin-mimetic activities of metal complexes with 3-hydroxypyridine-2-carboxylic acid. J Inorg Biochem 99(6):1275–1282

    Article  CAS  Google Scholar 

  23. Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ, Ramachandran C (1997) Mechanism of inhibition of protein–tyrosine phosphatases by vanadate and pervanadate. J Biol Chem 272(2):843–851

    Article  CAS  Google Scholar 

  24. Gordon JA, Tony H, Bartholomew MS (1991) [41] Use of vanadate as protein–phosphotyrosine phosphatase inhibitor. In: Methods in enzymology: Academic Press, pp 477–82

  25. Peters KG, Davis MG, Howard BW, Pokross M, Rastogi V, Diven C, Greis KD, Eby-Wilkens E, Maier M, Evdokimov A, Soper S, Genbauffe F (2003) Mechanism of insulin sensitization by BMOV (bis maltolato oxo vanadium); unliganded vanadium (VO4) as the active component. J Inorg Biochem 96(2–3):321–330

    Article  CAS  Google Scholar 

  26. Mikalsen S-O, Kaalhus O (1998) Properties of pervanadate and permolybdate. J Biol Chem 273(16):10036–10045

    Article  CAS  Google Scholar 

  27. Scrivens PJ, Alaoui-Jamali MA, Giannini G, Wang T, Loignon M, Batist G, Sandor VA (2003) Cdc25A-inhibitory properties and antineoplastic activity of bisperoxovanadium analogues. Mol Cancer Ther 2(10):1053–1059

    CAS  Google Scholar 

  28. Margoliash E, Novogrodsky A, Schejter A (1960) Irreversible reaction of 3-amino-1:2:4-triazole and related inhibitors with the protein of catalase. Biochem J 74:339–348

    CAS  Google Scholar 

  29. Gottlin EB, Xu X, Epstein DM, Burke SP, Eckstein JW, Ballou DP, Dixon JE (1996) Kinetic analysis of the catalytic domain of human Cdc25B. J Biol Chem 271(44):27445–27449

    Article  CAS  Google Scholar 

  30. Wang W-Q, Bembenek J, Gee KR, Yu H, Charbonneau H, Zhang Z-Y (2004) Kinetic and mechanistic studies of a cell cycle protein phosphatase Cdc14. J Biol Chem 279(29):30459–30468

    Article  CAS  Google Scholar 

  31. Sun J-P, Wang W-Q, Yang H, Liu S, Liang F, Fedorov AA, Almo SC, Zhang Z-Y (2005) Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion. Biochemistry 44(36):12009–12021

    Article  CAS  Google Scholar 

  32. Li L, Ernsting BR, Wishart MJ, Lohse DL, Dixon JE (1997) A family of putative tumor suppressors is structurally and functionally conserved in humans and yeast. J Biol Chem 272(47):29403–29406

    Article  CAS  Google Scholar 

  33. Johnston PA, Foster CA, Shun TY, Skoko JJ, Shinde S, Wipf P, Lazo JS (2007) Development and implementation of a 384-well homogeneous fluorescence intensity high-throughput screening assay to identify mitogen-activated protein kinase phosphatase-1 dual-specificity protein phosphatase inhibitors. Assay Drug Dev Technol 5(3):319–332

    Article  CAS  Google Scholar 

  34. Lee JO, Yang HJ, Georgescu MM, Di Cristofano A, Maehama T, Shi YG, Dixon JE, Pandolfi P, Pavletich NP (1999) Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell 99(3):323–334

    Article  CAS  Google Scholar 

  35. Maehama T, Taylor GS, Dixon JE (2001) PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem 70(1):247–279

    Article  CAS  Google Scholar 

  36. McConnachie G, Pass I, Walker SM, Downes CP (2003) Interfacial kinetic analysis of the tumour suppressor phosphatase, PTEN: evidence for activation by anionic phospholipids. Biochem J 371:947–955

    Article  CAS  Google Scholar 

  37. Seale AP, de Jesus LA, Kim S-Y, Choi Y-H, Lim HB, Hwang C-S, Kim Y-S (2005) Development of an automated protein-tyrosine phosphatase 1B inhibition assay and the screening of putative insulin-enhancing vanadium(IV) and zinc(II) complexes. Biotechnol Lett 27(4):221–225

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Leverhulme Trust project grant (project reference, F/07 058/AO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lok Hang Mak.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mak, L.H., Vilar, R. & Woscholski, R. Characterisation of the PTEN inhibitor VO-OHpic. J Chem Biol 3, 157–163 (2010). https://doi.org/10.1007/s12154-010-0041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12154-010-0041-7

Keywords

Navigation