Skip to main content

Advertisement

Log in

Antitumoral properties of two new vanadyl(IV) complexes in osteoblasts in culture: role of apoptosis and oxidative stress

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Background

Vanadium derivatives have been reported to display different biological effects, and in particular antineoplastic activity has been demonstrated in both in vivo and in vitro studies.

Purpose

To study the effect of two new organic vanadyl(IV) complexes (one with glucose, GluVO, and the other with naproxen, NapVO) in osteosarcoma cells.

Methods

UMR106 osteosarcoma cells and, for comparison, nontransformed MC3T3E1 osteoblasts were used. Proliferation and differentiation were assessed using the crystal violet assay and ALP specific activity, respectively. Morphological alterations were assessed by light microscopy. Lipid peroxidation was evaluated in terms of production of thiobarbituric acid-reactive substances (TBARS) and apoptosis was measured using annexin V. Extracellular regulated kinase (Erk) activation was investigated by Western blotting.

Results

Vanadium complexes caused morphological alterations and they strongly inhibited UMR106 cell proliferation and differentiation. In contrast, in MC3T3E1 cells, these vanadium derivatives had a relatively weak action. In UMR106 tumoral cells there was a significant increase in TBARS production. Both vanadium complexes induced apoptosis and activation of Erk. PD98059, an inhibitor of Erk phosphorylation, did not block the vanadium-induced antitumoral action. However, the antioxidants vitamins C and E abrogated the apoptosis and TBARS production induced by the vanadium complexes.

Conclusions

GluVO and NapVO exerted an antitumoral effect in UM106 osteosarcoma cells. They inhibited cell proliferation and differentiation. While the Erk cascade seems not to be directly related to the bioactivity of these vanadium derivatives, the action of both vanadium complexes with organic ligands may be mediated by apoptosis and oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–f
Fig. 2a–d
Fig. 3a, b
Fig. 4a–d
Fig. 5a–d
Fig. 6a, b
Fig. 7
Fig. 8a–d

Similar content being viewed by others

References

  1. Aubrecht J, Narla RK, Ghosh P, Stanek J, Uckun FM (1999) Molecular genotoxicity profiles of apoptosis-inducing vanadocene complexes. Toxicol Appl Pharmacol 154:228

    Article  CAS  PubMed  Google Scholar 

  2. Barrio DA, Braziunas MD, Etcheverry SB, Cortizo AM (1997) Maltol complexes of vanadium (IV) and (V) regulate in vitro alkaline phosphatase activity and osteoblast-like cell growth. J Trace Elem Med Biol 11:110

    CAS  PubMed  Google Scholar 

  3. Bishayee A, Roy S, Chatterjee M (1999) Characterization of selective induction and alteration of xenobiotic biotransforming enzymes by vanadium during diethylnitrosamine-induced chemical rat liver carcinogenesis. Oncol Res 11:41

    CAS  PubMed  Google Scholar 

  4. Blázquez C, Galve-Roperh I, Guzmán M (2000) De novo-synthesized ceramide signals apoptosis in astrocytes via extracellular signal-regulated kinase. FASEB J 14:2315

    Article  PubMed  Google Scholar 

  5. Bradford M (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248

    Article  CAS  PubMed  Google Scholar 

  6. Cortizo AM, Etcheverry SB (1995) Vanadium derivatives act as growth factor mimetic compounds upon differentiation and proliferation of osteoblast-like UMR106 cells. Mol Cell Biochem 145:97

    CAS  PubMed  Google Scholar 

  7. Cortizo AM, Bruzzone L, Molinuevo S, Etcheverry SB (2000) A possible role of oxidative stress in the vanadium-induced cytotoxicity in the MC3T3E1 osteoblast and UMR106 osteosarcoma cell lines. Toxicology 147:89

    Article  CAS  PubMed  Google Scholar 

  8. Cortizo MS, Alessandrini JL, Etcheverry SB, Cortizo AM (2001) A vanadium/aspirin complex controlled release using a poly(beta-propiolactone) film. Effects on osteosarcoma cells. J Biomater Sci Polym Ed 12:945

    Article  CAS  PubMed  Google Scholar 

  9. Djordjevic C (1995) Antitumor activity of vanadium compounds. In: Sigel H, Sigel A (eds) Metal ions in biological systems, vol 31. Marcel Dekker, New York, p 595

  10. D’Onofrio F, Le MQ, Chiasson JL, Srivastava AK (1994) Activation of mitogen activated protein (MAP) kinases by vanadate is independent of insulin receptor autophosphorylation. FEBS Lett 340:269

    Article  CAS  PubMed  Google Scholar 

  11. El-Naggar MM, El-Waseef AM, El-Halafawy KM, El-Sayed IH (1998) Antitumor activities of vanadium(IV), manganese(IV), iron(III), cobalt(II) and copper(II) complexes of 2-methylaminopyridine. Cancer Lett 133:71

    Article  CAS  PubMed  Google Scholar 

  12. Etcheverry SB, Cortizo AM (1998) Bioactivity of vanadium compounds in cells in culture. In: Nriagu JO (ed) Vanadium in the environment, part one. John Wiley and Sons, New York, p 359

  13. Etcheverry SB, Crans DC, Keramidas AD, Cortizo AM (1997) Insulin-mimetic action of vanadium compounds on osteoblast-like cells in culture. Arch Biochem Biophys 338:7

    Article  CAS  PubMed  Google Scholar 

  14. Etcheverry SB, Williams PAM, Baran EJ (1997) Synthesis and characterization of vanadyl (IV) complexes with saccharides. Carbohydr Res 302:131

    Article  CAS  Google Scholar 

  15. Etcheverry SB, Williams PAM, Barrio DA, Salice VC, Ferrer EG, Cortizo AM (2000) Synthesis, characterization and bioactivity of a new VO2+/aspirin complex. J Inorg Biochem 80:169

    Google Scholar 

  16. Etcheverry SB, Barrio DA, Cortizo AM, Williams PAM (2002) Three new vanadyl(IV) complexes with non-steroidal anti-inflammatory drugs (ibuprofen, naproxen and tolmetin). Bioactivity on osteoblast-like cells in culture. J Inorg Biochem 88:94

    Google Scholar 

  17. Etcheverry SB, Williams PAM, Sálice VC, Barrio DA, Ferrer EG, Cortizo AM (2002) Biochemical properties and mechanism of action of a vanadyl(IV)-aspirin complex on bone cell lines in culture. Biometals 15:37

    Article  CAS  PubMed  Google Scholar 

  18. Etcheverry SB, Barrio DA, Molinuevo MS, Cortizo AM (2002) Two new vanadyl(IV) complexes with potential antineoplastic effect on osteoblasts in culture. In: Khassanova L, Collery Ph, Maymard I, Khassanova Z, Ètienne JC (eds) Metal ions in biology and medicine, vol 7. John Libbey Eurotext, Paris, p 629

  19. Evangelou A, Karkabounas S, Kalpouzos G, Malamas M, Liasko R, Stefanou D, Vlahos AT, Kabanos TA (1997) Comparison of the therapeutic effects of two vanadium complexes administered at low dose on benzo[a]pyrene-induced malignant tumors in rats. Cancer Lett 119:221

    Article  CAS  PubMed  Google Scholar 

  20. Granchi D, Cenni E, Ciapetti G, Savarino L, Stea S, Gamberini S, Gori A, Pizzoferrato A (1998) Cell death induced by metal ions: necrosis or apoptosis?. J Mater Sci 9:31

    Article  Google Scholar 

  21. Gresser MJ, Tracey AS (1990) Vanadate as phosphate analogs in biochemistry. In: Chasteen ND (ed) Vanadium in biological systems. Kluwer Academic, Dordrecht, p 63

  22. Huang C, Zhang Z, Ding M, Li J, Ye J, Leonard SS, Shen HM, Butterworth L, Lu Y, Costa M, Rojanasakul Y, Castranova V, Vallyathan V, Shi X (2000) Vanadate induces p53 transactivation through hydrogen peroxide and causes apoptosis. J Biol Chem 275:32516

    Article  CAS  PubMed  Google Scholar 

  23. Jackson JK, Min W, Cruz TF, Cindric S, Arsenault L, Von Hoff DD, Degan D, Hunter WL, Burt HM (1997) A polymer-based drug delivery system for the antineoplastic agent bis(maltolato)oxovanadium in mice. Br J Cancer 75:1014

    CAS  PubMed  Google Scholar 

  24. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH (1994) Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 84:1415

    CAS  PubMed  Google Scholar 

  25. Krejsa CM, Nadler SG, Kavanagh TJ, Ledbetter JA, Schieven GL (1997) Role of oxidative stress in the action of vanadium phosphotyrosine phosphatase inhibitors. J Biol Chem 272:11541

    Article  CAS  PubMed  Google Scholar 

  26. Liasko R, Kabanos TA, Karkabounas S, Malamas M, Tasiopoulos AJ, Stefanou D, Collery P, Evangelou A (1998) Beneficial effects of a vanadium complex with cysteine, administered at low doses on benzo(alpha)pyrene-induced leiomyosarcomas in Wistar rats. Anticancer Res 18:3609

    CAS  PubMed  Google Scholar 

  27. McCarthy AD, Etcheverry SB, Cortizo AM (1999) Advanced glycation endproduct-specific receptors in rat and mouse osteoblast-like cells: regulation with stages of differentiation. Acta Diabetol 36:45

    Article  CAS  PubMed  Google Scholar 

  28. Narla RK, Dong Y, Klis D, Uckun FM (2001) Bis(4,7-dimethyl-1,10-phenanthroline) sulfatooxovanadium(IV) as a novel antileukemic agent with matrix metalloproteinase inhibitory activity. Clin Cancer Res 7:1094

    CAS  PubMed  Google Scholar 

  29. Nriagu JO (1998) History, occurrence and uses of vanadium. In: Nriagu JO (ed) Vanadium in the environment. John Wiley and Sons, New York, p 1

  30. Ohkawa H, Ohishi N, Yagi K, Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351

    CAS  PubMed  Google Scholar 

  31. Okajima T, Nakamura K, Zhang H, Ling N, Tanabe T, Yasuda T, Rosenfeld RG (1992) Sensitive colorimetric bioassays for insulin-like growth factor (IGF) stimulation of cell proliferation and glucose consumption: use in studies of IGF analogs. Endocrinology 130:2201

    Google Scholar 

  32. Pandey SK, Théberge JF, Bernier M, Srivastava AK (1999) Phosphatidylinositol 3-kinase requirement in activation of the ras/C-raf-1/MEK/ERK and p70(s6 k) signaling cascade by the insulinomimetic agent vanadyl sulfate. Biochemistry 38:14667

    CAS  PubMed  Google Scholar 

  33. Salice VC, Cortizo AM, Gomez Dumm CL, Etcheverry SB (1999) Tyrosine phosphorylation and morphological transformation induced by four vanadium compounds on MC3T3E1 cells. Mol Cell Biochem 198:119

    Article  PubMed  Google Scholar 

  34. Shisheva A, Shechter Y (1992) A cytosolic protein tyrosine kinase in rat adipocytes. FEBS Let 300:93

    Article  CAS  Google Scholar 

  35. Stein Gs, Lian JB (1993) Molecular mechanism mediating proliferation/differentiation interrelationship during progressive development of the osteoblast phenotype. Endocr Rev 14:424

    CAS  PubMed  Google Scholar 

  36. van Engeland M, Kuijpers HJH, Ramaekers FCS, Reutelingsperger ChPM, Schutte B (1997) Plasma membrane alterations and cytoskeletal changes in apoptosis. Exp Cell Res 235:421

    Article  PubMed  Google Scholar 

  37. Varga F, Luegmayr E, Fratzl-Zelman N, Glantschnig H, Ellinger A, Prinz D, Rumpler M, Klaushofer K (1999) Tri-iodothyronine inhibits multilayer formation of the osteoblastic cell line, MC3T3-E1, by promoting apoptosis. J Endocrinol 160:57

    CAS  PubMed  Google Scholar 

  38. Wang YZ, Bonner JC (2000) Mechanism of extracellular signal-regulated kinase ERK-1 and ERK-2 activation by vanadium pentoxide in rat pulmonary myofibroblasts. Am J Respir Cell Mol Biol 22:590

    CAS  PubMed  Google Scholar 

  39. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331

    CAS  PubMed  Google Scholar 

  40. Ye J, Ding M, Leonard SS, Robinson VA, Millecchia L, Zhang X, Castranova V, Vallyathan V, Shi X (1999) Vanadate induces apoptosis in epidermal JB6 P+ cells via hydrogen peroxide-mediated reactions. Mol Cell Biochem 202:9

    Article  CAS  PubMed  Google Scholar 

  41. Zamai L, Canonico B, Luchetti F, Ferri P, Melloni E, Guidotti L, Cappellini A, Cutroneo G, Vitale M, Papa S (2001) Supravital exposure to propidium iodide identifies apoptosis on adherent cells. Cytometry 44:57

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Z, Huang C, Li J, Leonard SS, Lanciotti R, Butterworth L, Shi X (2001) Vanadate-induced cell growth regulation and the role of reactive oxygen species. Arch Biochem Biophys 392:311–320

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

M.S.M. is a fellow of the Colegio de Farmacéuticos de la Provincia de Buenos Aires, D.A.B. is a fellow of the CICPBA, A.M.C. is a member of the Carrera del Investigador CICPBA, and S.B.E. is a Member of the Carrera del Investigador CONICET, Argentina. This study was partially supported by CONICET (PIP 1044/98), UNLP and Colegio de Farmacéuticos de la Provincia de Buenos Aires, Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana B. Etcheverry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molinuevo, M.S., Barrio, D.A., Cortizo, A.M. et al. Antitumoral properties of two new vanadyl(IV) complexes in osteoblasts in culture: role of apoptosis and oxidative stress. Cancer Chemother Pharmacol 53, 163–172 (2004). https://doi.org/10.1007/s00280-003-0708-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-003-0708-7

Keywords

Navigation