Skip to main content

Advertisement

Log in

The Use of Cellulose Membrane to Eliminate Burst Release from Intravaginal Rings

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Burst release was observed when ethylene vinyl acetate copolymer (EVA) intravaginal rings were tested for progesterone release in our previous work (Helbling et al. Pharm Res. 31(3):795–808, 2014). Burst release is undesirable in controlled delivery devices because release is uncontrollable and higher levels of active pharmaceutical ingredient could lead to the occurrence of adverse effect. The present contribution is about the use of membranes to coat EVA rings to eliminate burst release. Physicochemical state of progesterone in uncoated rings and the solubility and diffusion coefficient in membrane were studied. Hormone delivery from several rings of different sizes was compared. A mathematical model was used to analyze the effects of membrane properties on delivery rate. No chemical interactions were detected between hormone and polymer. Hormone was mainly forming amorphous aggregates inside rings, and migration to membrane was not observed during storage. Diffusion coefficient was smaller in membrane (∼10−8 cm2 s−1) than in matrix (∼10−7 cm2 s−1). Zero-order release kinetics were obtained for coated rings, and release rate decreases as the thickness of the coat increases. Cellulose membrane successfully eliminates burst release and controls the delivery from EVA rings. The equations developed can be used to determine the appropriate coat thickness to produce specific release rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

API:

Active pharmaceutical ingredient

DSC:

Differential scanning calorimetry

EVA:

Ethylene-vinyl acetate copolymer

FTIR:

Fourier-transform infrared spectroscopy

HPLC:

High-performance liquid chromatography

IR:

Infrared spectroscopy

PE:

Poly ethylene

PLGA:

Poly(lactic-co-glycolic acid)

SEM:

Scanning electron microscopy

THF:

Tetrahydrofuran

VA:

Vinyl acetate

References

  1. Helbling I, Ibarra JD, Luna J. The optimization of an intravaginal ring releasing progesterone using a mathematical model. Pharm Res. 2014;31(3):795–808.

    Article  CAS  PubMed  Google Scholar 

  2. Siepmann J, Siepmann F. Mathematical modeling of drug delivery. Int J Pharm. 2008;364(2):328–43.

    Article  CAS  PubMed  Google Scholar 

  3. Wen H, Park K. Introduction and overview of oral controlled release formulation design. Oral controlled release formulation design and drug delivery: John Wiley & Sons, Inc.; 2010. p. 1–19.

  4. Frenning G. Modelling drug release from inert matrix systems: from moving-boundary to continuous-field descriptions. Int J Pharm. 2011;418(1):88–99.

    Article  CAS  PubMed  Google Scholar 

  5. Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials. 1996;17(2):103–14.

    Article  PubMed  Google Scholar 

  6. Lee PI. Modeling of drug release from matrix systems involving moving boundaries: approximate analytical solutions. Int J Pharm. 2011;418(1):18–27.

    Article  CAS  PubMed  Google Scholar 

  7. Colombo P. Swelling-controlled release in hydrogel matrices for oral route. Adv Drug Deliv Rev. 1993;11(1–2):37–57.

    Article  CAS  Google Scholar 

  8. Colombo P, Bettini R, Massimo G, Catellani PL, Santi P, Peppas NA. Drug diffusion front movement is important in drug release control from swellable matrix tablets. J Pharm Sci. 1995;84(8):991–7.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou Y, Wu XY. Finite element analysis of diffusional drug release from complex matrix systems. I. Complex geometries and composite structures. J Control Release. 1997;49(2):277–88.

    Article  CAS  Google Scholar 

  10. Huang X, Brazel CS. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J Control Release. 2001;73(2–3):121–36.

    Article  CAS  PubMed  Google Scholar 

  11. Kishida A, Murakami K, Goto H, Akashi M, Kubota H, Endo T. Polymer drugs and polymeric drugs X: slow release of 5-fluorouracil from biodegradable poly(γ-glutamic acid) and its benzyl ester matrices. J Bioact Compat Polym. 1998;13(4):270–8.

    CAS  Google Scholar 

  12. Atkins TW, Tighe BJ, McCallion RL. Incorporation and release of fluorescein isothiocyanate-linked dextrans from a bead-formed macroporous hydrophilic matrix with potential for sustained release. Biomaterials. 1993;14(1):16–20.

    Article  CAS  PubMed  Google Scholar 

  13. Vasudev SC, Chandy T, Sharma CP. Development of chitosan/polyethylene vinyl acetate co-matrix: controlled release of aspirin-heparin for preventing cardiovascular thrombosis. Biomaterials. 1997;18(5):375–81.

    Article  CAS  PubMed  Google Scholar 

  14. Messaritaki A, Black SJ, van der Walle CF, Rigby SP. NMR and confocal microscopy studies of the mechanisms of burst drug release from PLGA microspheres. J Control Release. 2005;108(2–3):271–81.

    Article  CAS  PubMed  Google Scholar 

  15. Huang X, Li N, Wang D, Luo Y, Wu Z, Guo Z, et al. Quantitative three-dimensional analysis of poly (lactic-co-glycolic acid) microsphere using hard X-ray nano-tomography revealed correlation between structural parameters and drug burst release. J Pharm Biomed Anal. 2015;112:43–9.

    Article  CAS  PubMed  Google Scholar 

  16. Duncan G, Jess TJ, Mohamed F, Price NC, Kelly SM, van der Walle CF. The influence of protein solubilisation, conformation and size on the burst release from poly(lactide-co-glycolide) microspheres. J Control Release. 2005;110(1):34–48.

    Article  CAS  PubMed  Google Scholar 

  17. Luan X, Skupin M, Siepmann J, Bodmeier R. Key parameters affecting the initial release (burst) and encapsulation efficiency of peptide-containing poly(lactide-co-glycolide) microparticles. Int J Pharm. 2006;324(2):168–75.

    Article  CAS  PubMed  Google Scholar 

  18. Bruschi ML. Mathematical models of drug release, strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing; 2015. p. 63–86.

  19. Xiang A, McHugh AJ. Quantifying sustained release kinetics from a polymer matrix including burst effects. J Membr Sci. 2011;371(1–2):211–8.

    Article  CAS  Google Scholar 

  20. Narasimhan B, Langer R. Zero-order release of micro and macromolecules from polymeric devices: the role of the burst effect. J Control Release. 1997;47:13–20.

    Article  CAS  Google Scholar 

  21. Hezaveh H, Muhamad II. Controlled drug release via minimization of burst release in pH-response kappa-carrageenan/polyvinyl alcohol hydrogels. Chem Eng Res Des. 2013;91(3):508–19.

    Article  CAS  Google Scholar 

  22. Tan JPK, Wang Q, Tam KC. Control of burst release from nanogels via layer by layer assembly. J Control Release. 2008;128(3):248–54.

    Article  CAS  PubMed  Google Scholar 

  23. Song B, Xu S, Shi S, Jia P, Xu Q, Hu G, et al. Superhydrophobic coating to delay drug release from drug-loaded electrospun fibrous materials. Appl Surf Sci. 2015;359:245–51.

    Article  CAS  Google Scholar 

  24. Hasan AS, Socha M, Lamprecht A, Ghazouani FE, Sapin A, Hoffman M, et al. Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int J Pharm. 2007;344(1–2):53–61.

    Article  CAS  PubMed  Google Scholar 

  25. Charalambopoulou GC, Kikkinides ES, Papadokostaki KG, Stubos AK, Papaioannou AT. Numerical and experimental investigation of the diffusional release of a dispersed solute from polymeric multilaminate matrices. J Control Release. 2001;70(3):309–19.

    Article  CAS  PubMed  Google Scholar 

  26. Georgiadis MC, Kostoglou M. On the optimization of drug release from multi-laminated polymer matrix devices. J Control Release. 2001;77(3):273–85.

    Article  CAS  PubMed  Google Scholar 

  27. Bodmeier R, Paeratakul O. Drug release from laminated polymeric films prepared from aqueous latexes. J Pharm Sci. 1990;79:32–6.

    Article  CAS  PubMed  Google Scholar 

  28. Roumen FJ, Dieben TO. Clinical acceptability of an ethylene-vinyl-acetate nonmedicated vaginal ring. Contraception. 1999;59(1):59–62.

    Article  CAS  PubMed  Google Scholar 

  29. Kelsey JJ. Hormonal contraception and lactation. J Hum Lact. 1996;12(4):315–8.

    Article  CAS  PubMed  Google Scholar 

  30. Brache V, Payan LJ, Faundes A. Current status of contraceptive vaginal rings. Contraception. 2013;87(3):264–72.

    Article  CAS  PubMed  Google Scholar 

  31. Helbling IM, Luna JA, Cabrera MI. Mathematical modeling of drug delivery from torus-shaped single-layer devices. J Control Release. 2011;149:258–63.

    Article  CAS  PubMed  Google Scholar 

  32. Helbling IM, Ibarra JCD, Luna JA. Evaluation and optimization of progesterone release from intravaginal rings using response surface methodology. J Drug Delivery Sci Technol. 2015;29:218–25.

    Article  CAS  Google Scholar 

  33. ASTM International. ASTM D2857, Standard practice for dilute solution viscosity of polymers. 2001.

  34. Kurata M, Tsunashima Y. Viscosity-molecular weight relationships and unperturbed dimensions of linear chain molecules. 3rd edn ed. New York, USA.: John Wiley and Sons; 1989.

  35. Bunt CR, Rathbone MJ, Burggraaf S, Ogle CR. Development of a QC release assessment method for a physically large veterinary product containing a highly water insoluble drug and the effect of formulation variables upon release. Proc Int Symp Control Release Bioact Mater. 1997;24:145–6.

    Google Scholar 

  36. Wenhui D. Mechanism of diffusion of progesterone through ethylene vinyl acetate copolymer. J China Pharmaceutical Univ. 1987;18:87–90.

    Google Scholar 

  37. Barry BW. Dermatological formulations: percutaneous absorption. New York, USA: Marcel Dekker; 1983.

    Google Scholar 

  38. Paul DR, McSpadden SK. Diffusional release of a solute from a polymeric matrix. J Memb Sci. 1976;1:33–48.

    Article  CAS  Google Scholar 

  39. Flynn GL. Physicochemical determinants of skin absorption. Gerrity TR, and Henry, C. J., editor. New York, USA: Elsevier; 1990.

  40. Pereira GR, Marchetti JM, Bentley MVLB. A rapid method for determination of progesterone by reversed-phase liquid chromatography from aqueous media. Anal Lett. 2000;33:881–9.

    Article  CAS  Google Scholar 

  41. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13:123–33.

    Article  CAS  PubMed  Google Scholar 

  42. Moore JW, Flanner HH. Mathematical comparison of dissolution profiles. Pharm Technol. 1996;20:64–74.

    Google Scholar 

  43. Pillay V, Fassihi R. Evaluation and comparison of dissolution data derived from different modified release dosage forms: an alternative method. J Control Release. 1998;55:45–55.

    Article  CAS  PubMed  Google Scholar 

  44. Mori S, Barth HG. Size exclusion chromatography. Alemania: Springer; 1999.

    Book  Google Scholar 

  45. Tang M, Hou J, Lei L, Liu X, Guo S, Wang Z, et al. Preparation, characterization and properties of partially hydrolyzed ethylene vinyl acetate copolymer films for controlled drug release. Int J Pharm. 2010;400(1–2):66–73.

    Article  CAS  PubMed  Google Scholar 

  46. Zhu Y, Otsubo M, Honda C. Degradation of polymeric materials exposed to corona discharges. Polym Test. 2006;25:313–7.

    Article  CAS  Google Scholar 

  47. Sjahfirdi L, Septian A, Maheshwari H, Astuti P, Suyatna FD, Nasikin M. Determination of estrous period in female rats (Rattus norvegicus) by Fourier transform infrared (FTIR) through identification of reproductive hormones in blood samples. World Appl Sci J. 2011;14(4):539–45.

    Google Scholar 

  48. Tripathi R, Biradar SV, Mishra B, Paradkar AR. Study of polymorphs of progesterone by novel melt sonocrystallization technique: a technical note. AAPS Pharm Sci Technol. 2010;11(3):1493–8.

    Article  CAS  Google Scholar 

  49. Mu L, Feng SS. Fabrication, characterization and in vitro release of paclitaxel (Taxol) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J Control Release. 2001;76(3):239–54.

    Article  CAS  PubMed  Google Scholar 

  50. Dubernet C. Thermo analysis of microspheres. Thermochim Acta. 1995;248:259–69.

    Article  Google Scholar 

  51. Gupte A, Ciftci K. Formulation and characterization of Paclitaxel, 5-FU and Paclitaxel + 5-FU microspheres. Int J Pharm. 2004;276(1–2):93–106.

    Article  CAS  PubMed  Google Scholar 

  52. Bai Y, Qian J, An Q, Zhu Z, Zhang P. Pervaporation characteristics of ethylene–vinyl acetate copolymer membranes with different composition for recovery of ethyl acetate from aqueous solution. J Membr Sci. 2007;305(1–2):152–9.

    Article  CAS  Google Scholar 

  53. Bistac S, Kunemann P, Schultz J. Crystalline modifications of ethylene-vinyl acetate copolymers induced by a tensile drawing: effect of the molecular weight. Polymer. 1998;39(20):4875–81.

    Article  CAS  Google Scholar 

  54. Meng FH, Schricker SR, Brantley WA, Mendel DA, Rashid RG, Fields Jr HW, et al. Differential scanning calorimetry (DSC) and temperature-modulated DSC study of three mouthguard materials. Dent Mater. 2007;23(12):1492–9.

    Article  CAS  PubMed  Google Scholar 

  55. Duclos R, Saiter JM, Grenet J, Orecchioni AM. Polymorphism of progesterone. J Therm Anal. 1991;37(8):1869–75.

    Article  CAS  Google Scholar 

  56. Muramatsu M, Iwahashi M, Takeuchi U. Thermodynamic relationship between α- and β-forms of crystalline progesterone. J Pharm Sci. 1979;68(2):175–7.

    Article  CAS  PubMed  Google Scholar 

  57. Hill VL, Paserini N, Craig DQM, Vickers M, Anwar J, Feely LC. Investigation of progesterone loaded poly(d, l-lactide) microspheres using TMDCS, SEM and PXRD. J Therm Anal. 1998;54:673–85.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to express their gratitude to Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and to Universidad Nacional del Litoral (UNL) of Argentine, for the financial support granted to this contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignacio M. Helbling.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helbling, I.M., Ibarra, J.C.D. & Luna, J.A. The Use of Cellulose Membrane to Eliminate Burst Release from Intravaginal Rings. AAPS J 18, 960–971 (2016). https://doi.org/10.1208/s12248-016-9914-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-016-9914-1

KEY WORDS

Navigation