Skip to main content

Advertisement

Log in

Encapsulation and release of hydrocortisone from proliposomes govern vaginal delivery

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Topical preparations of hydrocortisone can be used for the anti-inflammatory treatment of the female genital area. Although the drug is a low-strength corticosteroid, systemic absorption and distribution of the drug are the most common safety risks associated with this therapy. In the current investigation, we elucidate the physicochemical properties of lipid-based drug carrier systems that govern the local bioavailability of hydrocortisone for intravaginal administration. For this purpose, we compared various proliposome formulations with a commercial cream. Depending on the availability of physiological acceptors, encapsulation and drug release from the lipid phase were found to be the most important drivers of drug bioavailability. The high permeability of hydrocortisone leads to rapid transport of the drug across the mucosal cell layer as indicated by experiments using HEC-1-A and CaSki cell monolayer models. Under sink conditions, differences in the release from the liposomes as determined in the Dispersion Releaser were almost negligible. However, under non-sink conditions, the drug release plateaued at levels corresponding to the encapsulation efficiency. After redispersion, all liposomal formulations performed better than the commercial drug product indicating that the encapsulation into the lipid phase is the main driver sustaining the release.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and materials

Materials are commercially available; data will be made available on request.

Abbreviations

ANOVA:

Analysis of variance

β-CD:

Methyl-β-cyclodextrin

C:

Cholesterol

Caco-2:

Carcinoma colon

CaSki:

Human cervical carcinoma

CC50 :

Half-maximal cytotoxic concentration

CE:

Cellulose ester

DLS:

Dynamic light scattering

DSC:

Differential scanning calorimetry

EE%:

Encapsulation efficiency

EPC:

Egg phosphatidylcholine

f1:

Difference factor

f2:

Similarity factor

HBSS:

Hank’s Balanced Salt solution

HEC-1-A:

Human endometrial adenocarcinoma

HPLC-UV:

High-performance liquid chromatography with ultraviolet detection

LOD:

Limit of detection

LOQ:

Limit of quantitation

MWCO:

Molecular weight cutoff

Papp :

Apparent permeability coefficients

PDI:

Polydispersity index

PER:

Permeability enhancement ratio

PTDR:

Pharma Test Dispersion Releaser

PTFE:

Polytetrafluoroethylene

SPC:

Soy phosphatidylcholine

sVSF:

Simplified vaginal simulant fluid

SE:

Standard error

SD:

Standard deviation

TEER:

Transepithelial electrical resistance

TEM:

Transmission electron microscopy

US-FDA:

United States Food and Drug Administration

References

  1. das Neves J, Notario-Pérez F, Sarmento B. Women-specific routes of administration for drugs: a critical overview. Adv Drug Deliv Rev. 2021;176:113865.

  2. Pavelić Ž, Škalko-Basnet N, Schubert R. Liposomal gels for vaginal drug delivery. Int J Pharm. 2001;219:139–49.

    Article  PubMed  Google Scholar 

  3. das Neves J, Amiji M, Sarmento B. Mucoadhesive nanosystems for vaginal microbicide development: friend or foe? WIREs Nanomed Nanobiotechnol. 2011;3:389–99.

  4. Vanić Ž, Škalko-Basnet N. Nanopharmaceuticals for improved topical vaginal therapy: can they deliver? Eur J Pharm Sci. 2013;50:29–41.

    Article  PubMed  Google Scholar 

  5. Richardson JL, Whetstone J, Fisher AN, Watts P, Farraj NF, Hinchcliffe M, et al. Gamma-scintigraphy as a novel method to study the distribution and retention of a bioadhesive vaginal delivery system in sheep. J Control Release. 1996;42:133–42.

    Article  CAS  Google Scholar 

  6. Vermani K, Garg S. The scope and potential of vaginal drug delivery. Pharm Sci Technol Today. 2000;3:359–64.

    Article  CAS  PubMed  Google Scholar 

  7. Patravale VB, Mandawgade SD. Novel cosmetic delivery systems: an application update. Int J Cosmet Sci. 2008;30:19–33.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang H. Thin-film Hydration Followed by Extrusion Method for Liposome Preparation. In: D’Souza GGM, editor. Liposomes: Methods and Protocols. New York, NY: Springer New York 2017;17–22.

  9. Batavia R, Taylor KMG, Craig DQM, Thomas M. The measurement of beclomethasone dipropionate entrapment in liposomes: a comparison of a microscope and an HPLC method. Int J Pharm. 2001;212:109–19.

    Article  CAS  PubMed  Google Scholar 

  10. Darwis Y, Kellaway IW. Nebulisation of rehydrated freeze-dried beclomethasone dipropionate liposomes. Int J Pharm. 2001;215:113–21.

    Article  CAS  PubMed  Google Scholar 

  11. Elhissi AMA, O’Neill MAA, Roberts SA, Taylor KMG. A calorimetric study of dimyristoylphosphatidylcholine phase transitions and steroid–liposome interactions for liposomes prepared by thin film and proliposome methods. Int J Pharm. 2006;320:124–30.

    Article  CAS  PubMed  Google Scholar 

  12. Shah H, Madni A, Rahim MA, Jan N, Khan A, Khan S, et al. Fabrication, in vitro and ex vivo evaluation of proliposomes and liposomal derived gel for enhanced solubility and permeability of diacerein. PLoS ONE. 2021;16: e0258141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gala RP, Khan I, Elhissi AMA, Alhnan MA. A comprehensive production method of self-cryoprotected nano-liposome powders. Int J Pharm. 2015;486:153–8.

    Article  CAS  PubMed  Google Scholar 

  14. das Neves J, Nunes R, Machado A, Sarmento B. Polymer-based nanocarriers for vaginal drug delivery. Adv Drug Deliv Rev. 2015;92:53–70.

  15. Pavelić Ž, Škalko-Basnet N, Filipović-Grčić J, Martinac A, Jalšenjak I. Development and in vitro evaluation of a liposomal vaginal delivery system for acyclovir. J Control Release. 2005;106:34–43.

    Article  PubMed  Google Scholar 

  16. Berginc K, Suljaković S, Škalko-Basnet N, Kristl A. Mucoadhesive liposomes as new formulation for vaginal delivery of curcumin. Eur J Pharm Biopharm. 2014;87:40–6.

    Article  CAS  PubMed  Google Scholar 

  17. Hunt CA, Tsang S. α-Tocopherol retards autoxidation and prolongs the shelf-life of liposomes. Int J Pharm. 1981;8:101–10.

    Article  CAS  Google Scholar 

  18. Grit M, Crommelin DJA. Chemical stability of liposomes: implications for their physical stability. Chem Phys Lipid. 1993;64:3–18.

    Article  CAS  Google Scholar 

  19. Wong M, Thompson TE. Aggregation of dipalmitoylphosphatidylcholine vesicles. Biochemistry. 1982;21:4133–9.

    Article  CAS  PubMed  Google Scholar 

  20. Payne NI, Ambrose CV, Timmins P, Ward MD, Ridgway F. Proliposomes: a novel solution to an old problem. J Pharm Sci. 1986;75:325–9.

    Article  CAS  PubMed  Google Scholar 

  21. Payne NI, Browning I, Hynes CA. Characterization of proliposomes. J Pharm Sci. 1986;75:330–3.

    Article  CAS  PubMed  Google Scholar 

  22. Perrett S, Golding M, Williams WP. A simple method for the preparation of liposomes for pharmaceutical applications: characterization of the liposomes. J Pharm Pharmacol. 1991;43:154–61.

    Article  CAS  PubMed  Google Scholar 

  23. Alves GP, Santana MHA. Phospholipid dry powders produced by spray drying processing: structural, thermodynamic and physical properties. Powder Technol. 2004;145:139–48.

    Article  CAS  Google Scholar 

  24. Parhizkar E, Sadeghinia D, Hamishehkar H, Yaqoubi S, Nokhodchi A, Alipour S. Carrier effect in development of rifampin loaded proliposome for pulmonary delivery: a quality by design study. Adv Pharm Bull. 2022;12:336–45.

    CAS  PubMed  Google Scholar 

  25. Chen C-M, Alli D. Use of fluidized bed in proliposome manufacturing. J Pharm Sci. 1987;76:419.

    Article  CAS  PubMed  Google Scholar 

  26. Kumar R, Gupta RB, Betegeri G. Formulation, characterization, and in vitro release of glyburide from proliposomal beads. Drug Delivery. 2001;8:25–7.

    Article  CAS  PubMed  Google Scholar 

  27. Singh N, Kushwaha P, Ahmad U, Abdullah M. Proliposomas: Una aproximación para el desarrollo de liposoma estables. Ars Pharmaceutica (Internet). 2019;60:231–40.

    Article  CAS  Google Scholar 

  28. Xia F, Hu D, Jin H, Zhao Y, Liang J. Preparation of lutein proliposomes by supercritical anti-solvent technique. Food Hydrocoll. 2012;26:456–63.

    Article  CAS  Google Scholar 

  29. Xia F, Jin H, Zhao Y, Guo X. Supercritical antisolvent-based technology for preparation of vitamin D3 proliposome and its characteristics. Chin J Chem Eng. 2011;19:1039–46.

    Article  CAS  Google Scholar 

  30. Chu C, Tong S-s, Xu Y, Wang L, Fu M, Ge Y-r, et al. Proliposomes for oral delivery of dehydrosilymarin: preparation and evaluation in vitro and in vivo. Acta Pharmacol Sinica. 2011;32:973–80.

  31. Kurakula M, Srinivas C, Kasturi N, Diwan PD. Formulation and evaluation of prednisolone proliposomal gel for effective topical pharmacotherapy. Int J Pharm Sci Drug Res. 2012;4:35–43.

    CAS  Google Scholar 

  32. Rojanarat W, Nakpheng T, Thawithong E, Yanyium N, Srichana T. Levofloxacin-proliposomes: opportunities for use in lung tuberculosis. Pharmaceutics. 2012;4:385–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ning M-Y, Guo Y-Z, Pan H-Z, Yu H-M, Gu Z-W. Preparation and evaluation of proliposomes containing clotrimazole. Chem Pharm Bull. 2005;53:620–4.

    Article  CAS  Google Scholar 

  34. Anderson M, Kutzner S, Kaufman RH. Treatment of vulvovaginal lichen planus with vaginal hydrocortisone suppositories. Obstet Gynecol. 2002;100:359–62.

    CAS  PubMed  Google Scholar 

  35. Manfre M, Adams D, Callahan G, Gould P, Lang S, McCubbins H, et al. Hydrocortisone cream to reduce perineal pain after vaginal birth: a randomized controlled trial. MCN Am J Matern Child Nurs. 2015;40.

  36. Lennernäs H, Skrtic S, Johannsson G. Replacement therapy of oral hydrocortisone in adrenal insufficiency: the influence of gastrointestinal factors. Expert Opin Drug Metab Toxicol. 2008;4:749–58.

    Article  PubMed  Google Scholar 

  37. Corbo DC, Liu J-C, Chien YW. Drug absorption through mucosal membranes: effect of mucosal route and penetrant hydrophilicity. Pharm Res. 1989;6:848–52.

    Article  CAS  PubMed  Google Scholar 

  38. das Neves J, Araújo F, Andrade F, Michiels J, Ariën KK, Vanham G, et al. In vitro and ex vivo evaluation of polymeric nanoparticles for vaginal and rectal delivery of the anti-HIV drug dapivirine. Mol Pharm. 2013;10:2793–807.

  39. das Neves J, Sarmento B. Precise engineering of dapivirine-loaded nanoparticles for the development of anti-HIV vaginal microbicides. Acta Biomater. 2015;18:77–87.

  40. Facchinatto WM, Galante J, Mesquita L, Silva DS, Martins dos Santos D, Moraes TB, et al. Clotrimazole-loaded N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan nanoparticles for topical treatment of vulvovaginal candidiasis. Acta Biomater. 2021;125:312–21.

  41. Grammen C, Augustijns P, Brouwers J. In vitro profiling of the vaginal permeation potential of anti-HIV microbicides and the influence of formulation excipients. Antiviral Res. 2012;96:226–33.

    Article  CAS  PubMed  Google Scholar 

  42. Notario-Pérez F, Galante J, Martín-Illana A, Cazorla-Luna R, Sarmento B, Ruiz-Caro R, et al. Development of pH-sensitive vaginal films based on methacrylate copolymers for topical HIV-1 pre-exposure prophylaxis. Acta Biomater. 2021;121:316–27.

    Article  PubMed  Google Scholar 

  43. Janas C, Mast MP, Kirsamer L, Angioni C, Gao F, Mantele W, et al. The dispersion releaser technology is an effective method for testing drug release from nanosized drug carriers. Eur J Pharm Sci. 2017;115:73–83.

    CAS  Google Scholar 

  44. Mast M-P, Modh H, Knoll J, Fecioru E, Wacker MG. An update to dialysis-based drug release testing - data analysis and validation using the Pharma Test Dispersion Releaser. Pharmaceutics. 2021;13:12.

    Article  Google Scholar 

  45. Turpeinen U, Markkanen H, Välimäki M, Stenman UH. Determination of urinary free cortisol by HPLC. Clin Chem. 1997;43:1386–91.

    Article  CAS  PubMed  Google Scholar 

  46. Präbst K, Engelhardt H, Ringgeler S, Hübner H. Basic colorimetric proliferation assays: MTT, WST, and resazurin. In: Gilbert DF, Friedrich O, editors. Cell viability assays: methods and protocols. New York, NY: Springer New York. 2017;1–17.

  47. Commission CP. Chinese Pharmacoepia (Ch.P.) 10th Edition. 2015.

  48. Rastogi R, Su J, Mahalingam A, Clark J, Sung S, Hope T, et al. Engineering and characterization of simplified vaginal and seminal fluid simulants. Contraception. 2016;93:337–46.

    Article  CAS  PubMed  Google Scholar 

  49. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10:2.

    Article  Google Scholar 

  50. Nezzal A, Aerts L, Verspaille M, Henderickx G, Redl A. Polymorphism of sorbitol. J Cryst Growth. 2009;311:3863–70.

    Article  CAS  Google Scholar 

  51. Khan I, Yousaf S, Subramanian S, Korale O, Alhnan MA, Ahmed W, et al. Proliposome powders prepared using a slurry method for the generation of beclometasone dipropionate liposomes. Int J Pharm. 2015;496:342–50.

  52. Suitchmezian V, Jeß I, Näther C. Structural, thermodynamic, and kinetic aspects of the trimorphism of hydrocortisone. J Pharm Sci. 2008;97:4516–27.

    Article  CAS  PubMed  Google Scholar 

  53. Byeon JC, Lee S-E, Kim T-H, Ahn JB, Kim D-H, Choi J-S, et al. Design of novel proliposome formulation for antioxidant peptide, glutathione with enhanced oral bioavailability and stability. Drug Delivery. 2019;26:216–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hazemoto N, Harada M, Suzuki S, Kaiho F, Haga M, Kato Y. Effect of phosphatidylcholine and cholesterol on pH-sensitive liposomes. Chem Pharm Bull (Tokyo). 1993;41:1003–6.

    Article  CAS  PubMed  Google Scholar 

  55. Naylor LJ, Bakatselou V, Dressman JB. Comparison of the mechanism of dissolution of hydrocortisone in simple and mixed micelle systems. Pharm Res. 1993;10:865–70.

    Article  CAS  PubMed  Google Scholar 

  56. Standardization IOf. ISO 10993–5:2009 Biological Evaluation of Medical Devices - Part 5: tests for in vitro cytotoxicity. Geneva, Switzerland. 2009.

  57. Gorodeski GI. Estrogen increases the permeability of the cultured human cervical epithelium by modulating cell deformability. Am J Physiol Cell Physiol. 1998;275:C888–99.

    Article  CAS  Google Scholar 

  58. Machado RM, Palmeira-de-Oliveira A, Gaspar C, Martinez-de-Oliveira J, Palmeira-de-Oliveira R. Studies and methodologies on vaginal drug permeation. Adv Drug Deliv Rev. 2015;92:14–26.

    Article  CAS  PubMed  Google Scholar 

  59. Heimbach T, Oh D-M, Li LY, Forsberg M, Savolainen J, Leppänen J, et al. Absorption rate limit considerations for oral phosphate prodrugs. Pharm Res. 2003;20:848–56.

    Article  CAS  PubMed  Google Scholar 

  60. Cao Z, Zhang X, Wang C, Liu L, Zhao L, Wang J, et al. Different effects of cholesterol on membrane permeation of arginine and tryptophan revealed by bias-exchange metadynamics simulations. J Chem Phys. 2019;150: 084106.

    Article  PubMed  Google Scholar 

  61. Zhang L, Bennett WFD, Zheng T, Ouyang P-K, Ouyang X, Qiu X, et al. Effect of cholesterol on cellular uptake of cancer drugs pirarubicin and ellipticine. J Phys Chem B. 2016;120:3148–56.

    Article  CAS  PubMed  Google Scholar 

  62. Ramanathan R, Jiang Y, Read B, Golan-Paz S, Woodrow KA. Biophysical characterization of small molecule antiviral-loaded nanolipogels for HIV-1 chemoprophylaxis and topical mucosal application. Acta Biomater. 2016;36:122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Jøraholmen MW, Basnet P, Acharya G, Škalko-Basnet N. PEGylated liposomes for topical vaginal therapy improve delivery of interferon alpha. Eur J Pharm Biopharm. 2017;113:132–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Marc-Phillip Mast acknowledges the State of Hessen for financial contributions to the LOEWE research center for Translational Medicine and Pharmacology (Frankfurt, Germany). Matthias G. Wacker acknowledges the Singaporean Ministry of Education (A-0004627-00-00) and the Resilience & Growth Fund of the National Research Foundation (A-0000065-09-00) for financial support. José das Neves acknowledges financing by Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior in the framework of the project “Institute for Research and Innovation in Health Sciences” (UID/BIM/04293/2019). This work was supported by the Ministry of Science and Higher Education of the Russian Federation (grant No. 075-15-2020-792, Unique identifier RF-190220X0031).

Funding

All funding sources have been declared under Acknowledgements.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MPM, MGW; investigation: MPM, LM; writing—original draft preparation: MPM; writing—review and editing: MPM, KG, JdN, MGW, S.G.; funding acquisition: JdN, MGW; supervision: JdN, MGW, SG. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to José das Neves or Matthias G. Wacker.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (991 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mast, MP., Mesquita, L., Gan, K. et al. Encapsulation and release of hydrocortisone from proliposomes govern vaginal delivery. Drug Deliv. and Transl. Res. 13, 1022–1034 (2023). https://doi.org/10.1007/s13346-022-01263-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-022-01263-x

Keywords

Navigation