Skip to main content

Advertisement

Log in

Quantitative Prediction of Human Pharmacokinetics for mAbs Exhibiting Target-Mediated Disposition

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Prediction of human pharmacokinetics (PK) can be challenging for monoclonal antibodies (mAbs) exhibiting target-mediated drug disposition (TMDD). In this study, we performed a quantitative analysis of a diverse set of six mAbs exhibiting TMDD to explore translational rules that can be utilized to predict human PK. A TMDD model with rapid-binding approximation was utilized to fit PK and PD (i.e., free and/or total target levels) data, and average absolute fold error (AAFE) was calculated for each model parameter. Based on the comparative analysis, translational rules were developed and applied to a test antibody not included in the original analysis. AAFE of less than two-fold was observed between monkey and human for baseline target levels (R 0), body-weight (BW) normalized central elimination rate (K el/BW−0.25) and central volume (V c/BW1.0). AAFE of less than three-fold was estimated for the binding affinity constant (K D). The other four parameters, i.e., complex turnover rate (K int), target turnover rate (K deg), central to peripheral distribution rate constant (K pt) and peripheral to central rate constant (K tp) were poorly correlated between monkey and human. The projected human PK of test antibody based on the translation rules was in good agreement with the observed nonlinear PK. In conclusion, we recommend a TMDD model-based prediction approach that integrates in vitro human biomeasures and in vivo preclinical data using translation rules developed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

REFERENCES

  1. Rodrigues ME, Costa AR, Henriques M, Azeredo J, Oliveira R. Technological progresses in monoclonal antibody production systems. Biotechnol Prog. 2010;26(2):332–51. doi:10.1002/btpr.348.

    CAS  PubMed  Google Scholar 

  2. Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004;93(11):2645–68. doi:10.1002/jps.20178.

    Article  CAS  PubMed  Google Scholar 

  3. Wang W, Wang EQ, Balthasar JP. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84(5):548–58. doi:10.1038/clpt.2008.170.

    Article  CAS  PubMed  Google Scholar 

  4. Mould DR, Green B. Pharmacokinetics and pharmacodynamics of monoclonal antibodies: concepts and lessons for drug development. BioDrugs. 2010;24(1):23–39. doi:10.2165/11530560-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  5. Dirks NL, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49(10):633–59. doi:10.2165/11535960-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  6. Yousry TA, Major EO, Ryschkewitsch C, Fahle G, Fischer S, Hou J, et al. Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med. 2006;354(9):924–33. doi:10.1056/NEJMoa054693.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G, et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med. 2005;352(25):2598–608. doi:10.1056/NEJMoa043980.

    Article  CAS  PubMed  Google Scholar 

  8. Suntharalingam G, Perry MR, Ward S, Brett SJ, Castello-Cortes A, Brunner MD, et al. Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med. 2006;355(10):1018–28. doi:10.1056/NEJMoa063842.

    Article  CAS  PubMed  Google Scholar 

  9. Mordenti J, Chen SA, Moore JA, Ferraiolo BL, Green JD. Interspecies scaling of clearance and volume of distribution data for five therapeutic proteins. Pharm Res. 1991;8(11):1351–9. doi:10.1023/A:1015836720294.

    Article  CAS  PubMed  Google Scholar 

  10. Mahmood I. Interspecies scaling of protein drugs: prediction of clearance from animals to humans. J Pharm Sci. 2004;93(1):177–85. doi:10.1002/jps.10531.

    Article  CAS  PubMed  Google Scholar 

  11. Wang W, Prueksaritanont T. Prediction of human clearance of therapeutic proteins: simple allometric scaling method revisited. Biopharm Drug Dispos. 2010;31(4):253–63. doi:10.1002/bdd.708.

    PubMed  Google Scholar 

  12. Ling J, Zhou H, Jiao Q, Davis HM. Interspecies scaling of therapeutic monoclonal antibodies: initial look. J Clin Pharmacol. 2009;49(12):1382–402. doi:10.1177/0091270009337134.

    Article  CAS  PubMed  Google Scholar 

  13. Deng R, Iyer S, Theil FP, Mortensen DL, Fielder PJ, Prabhu S. Projecting human pharmacokinetics of therapeutic antibodies from nonclinical data: what have we learned? MAbs. 2011;3(1):61–6. doi:10.4161/mabs.3.1.13799.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Oitate M, Masubuchi N, Ito T, Yabe Y, Karibe T, Aoki T, et al. Prediction of human pharmacokinetics of therapeutic monoclonal antibodies from simple allometry of monkey data. Drug Metab Pharmacokinet. 2011;26(4):423–30. doi:10.2133/dmpk.DMPK-11-RG-011.

    Article  CAS  PubMed  Google Scholar 

  15. Oitate M, Nakayama S, Ito T, Kurihara A, Okudaira N, Izumi T. Prediction of human plasma concentration-time profiles of monoclonal antibodies from monkey data by a species-invariant time method. Drug Metab Pharmacokinet. 2012;27(3):354–9.

    CAS  PubMed  Google Scholar 

  16. Dong JQ, Salinger DH, Endres CJ, Gibbs JP, Hsu CP, Stouch BJ, et al. Quantitative prediction of human pharmacokinetics for monoclonal antibodies: retrospective analysis of monkey as a single species for first-in-human prediction. Clin Pharmacokinet. 2011;50(2):131–42. doi:10.2165/11537430-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  17. Kagan L, Abraham AK, Harrold JM, Mager DE. Interspecies scaling of receptor-mediated pharmacokinetics and pharmacodynamics of type I interferons. Pharm Res. 2010;27(5):920–32. doi:10.1007/s11095-010-0098-6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Luu KT, Bergqvist S, Chen E, Hu-Lowe D, Kraynov E. A model-based approach to predicting the human pharmacokinetics of a monoclonal antibody exhibiting target-mediated drug disposition. J Pharmacol Exp Ther. 2012;341(3):702–8. doi:10.1124/jpet.112.191999.

    Article  CAS  PubMed  Google Scholar 

  19. Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–32. doi:10.1023/A:1014414520282.

    Article  CAS  PubMed  Google Scholar 

  20. Mager DE, Krzyzanski W. Quasi-equilibrium pharmacokinetic model for drugs exhibiting target-mediated drug disposition. Pharm Res. 2005;22(10):1589–96. doi:10.1007/s11095-005-6650-0.

    Article  CAS  PubMed  Google Scholar 

  21. Lavielle M, Mentre F. Estimation of population pharmacokinetic parameters of saquinavir in HIV patients with the MONOLIX software. J Pharmacokinet Pharmacodyn. 2007;34(2):229–49. doi:10.1007/s10928-006-9043-z.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Beal SL. Ways to fit a PK model with some data below the quantification limit. J Pharmacokinet Pharmacodyn. 2001;28(5):481–504. doi:10.1023/A:1012299115260.

    Article  CAS  PubMed  Google Scholar 

  23. Bauer RJ, Dedrick RL, White ML, Murray MJ, Garovoy MR. Population pharmacokinetics and pharmacodynamics of the anti-CD11a antibody hu1124 in human subjects with psoriasis. J Pharmacokinet Biopharm. 1999;27(4):397–420. doi:10.1023/A:1020917122093.

    Article  CAS  PubMed  Google Scholar 

  24. Ng CM, Stefanich E, Anand BS, Fielder PJ, Vaickus L. Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm Res. 2006;23(1):95–103. doi:10.1007/s11095-005-8814-3.

    Article  CAS  PubMed  Google Scholar 

  25. Scheerens H, Su Z, Irving B, Townsend MJ, Zheng Y, Stefanich E, et al. MTRX1011A, a humanized anti-CD4 monoclonal antibody, in the treatment of patients with rheumatoid arthritis: a phase I randomized, double-blind, placebo-controlled study incorporating pharmacodynamic biomarker assessments. Arthritis Res Ther. 2011;13(5):R177. doi:10.1186/ar3502.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Zheng Y, Scheerens H, Davis Jr JC, Deng R, Fischer SK, Woods C, et al. Translational pharmacokinetics and pharmacodynamics of an FcRn-variant anti-CD4 monoclonal antibody from preclinical model to phase I study. Clin Pharmacol Ther. 2011;89(2):283–90. doi:10.1038/clpt.2010.311.

    Article  CAS  PubMed  Google Scholar 

  27. Hasegawa M, Fujimoto M, Kikuchi K, Takehara K. Elevated serum levels of interleukin 4 (IL-4), IL-10, and IL-13 in patients with systemic sclerosis. J Rheumatol. 1997;24(2):328–32.

    CAS  PubMed  Google Scholar 

  28. Hasegawa M, Sato S, Fujimoto M, Ihn H, Kikuchi K, Takehara K. Serum levels of interleukin 6 (IL-6), oncostatin M, soluble IL-6 receptor, and soluble gp130 in patients with systemic sclerosis. J Rheumatol. 1998;25(2):308–13.

    CAS  PubMed  Google Scholar 

  29. Machy P, Truneh A. Differential half-life of major histocompatibility complex encoded class I molecules in T and B lymphoblasts. Mol Immunol. 1989;26(8):687–96. doi:10.1016/0161-5890(89)90027-8.

    Article  CAS  PubMed  Google Scholar 

  30. Truneh A, Machy P. Detection of very low receptor numbers on cells by flow cytometry using a sensitive staining method. Cytometry. 1987;8(6):562–7. doi:10.1002/cyto.990080605.

    Article  CAS  PubMed  Google Scholar 

  31. Betts AM, Clark TH, Yang J, Treadway JL, Li M, Giovanelli MA, et al. The application of target information and preclinical pharmacokinetic/pharmacodynamic modeling in predicting clinical doses of a Dickkopf-1 antibody for osteoporosis. J Pharmacol Exp Ther. 2010;333(1):2–13. doi:10.1124/jpet.109.164129.

    Article  CAS  PubMed  Google Scholar 

  32. Tabrizi MA, Tseng CM, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11(1–2):81–8. doi:10.1016/S1359-6446(05)03638-X.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank Dr. Donald E. Mager, University at Buffalo, for helping in the development and review of this manuscript. This work was partially supported by the stipend Aman P. Singh received as a Pharmacokinetic/Pharmacodynamic Summer Intern at PDM Department in Pfizer and partially supported by the NIH grant GM 57980

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratap Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

mAb-1 (Efalizumab) pharmacokinetics and %CD11a receptor modulation in chimpanzees fitted with a rapid-binding approximation of TMDD model. (DOCX 35 kb)

Figure S2

mAb-1 (Efalizumab) pharmacokinetics and %CD11a receptor modulation in Psoriatic patients fitted with a rapid-binding approximation of a TMDD model. (DOCX 101 kb)

Figure S3

mAb-2 (TRX-1) pharmacokinetics, free and total % CD4+ cells modulation in healthy baboons fitted with a rapid-binding approximation of TMDD model. (DOCX 108 kb)

Figure S4

mAb-2 (TRX-1) pharmacokinetics, free and total % CD4+ cells modulation in healthy volunteers in phase 1 clinical trial fitted with a rapid-binding approximation of TMDD model. (DOCX 104 kb)

Figure S5

mAb-3 (MTRX-1) pharmacokinetics, free and total %CD4+ cells modulation in baboons fitted with a rapid-binding approximation of TMDD model. (DOCX 60 kb)

Figure S6

mAb-3 (MTRX-1) pharmacokinetics, free and total %CD4+ cells modulation fitted with a rapid-binding approximation of TMDD model. (DOCX 67 kb)

Figure S7

mAb-4 pharmacokinetics in cynomolgus monkeys and healthy volunteers in phase 1 trial fitted with a rapid-binding approximation of a TMDD model. (DOCX 353 kb)

Figure S8

mAb-5 pharmacokinetics in cynomolgus monkeys and in humans fitted with a rapid-binding approximation of a TMDD model. (DOCX 163 kb)

Figure S9

mAb-6 pharmacokinetics and total %target modulation in cynomolgus monkeys fitted with a rapid-binding approximation of TMDD model. (DOCX 50 kb)

Figure S10

mAb-6 pharmacokinetics and total %target modulation in healthy volunteers in a phase-1 trial fitted with a rapid-binding approximation of TMDD model. (DOCX 52 kb)

Figure S11

TMDD model based predictions for the test drug (mAb-7) PK in a phase-1 clinical trial in healthy volunteers. Note that most of the PK data (except for one subject) for 3 mg SC dose was below the limit of quantification of the assay and could not be presented in Figure 6. Consistent with these findings, model predictions for 3mg SC group were below LLOQ. (DOCX 103 kb)

Figure S12

Vmax/Km model based predictions for the test drug (mAb-7) PK in a phase-1 clinical trial in healthy volunteers. (DOCX 105 kb)

Figure S13

Comparative performance of translation rule based predictions vs. empirical (V max/K m) approach. Predicted AUC (A) and Cmax (B) at each dose (3-120mg SC) are shown for the two approaches and compared against the observed data. Solid diagonal line represents perfect agreement. (DOCX 217 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.P., Krzyzanski, W., Martin, S.W. et al. Quantitative Prediction of Human Pharmacokinetics for mAbs Exhibiting Target-Mediated Disposition. AAPS J 17, 389–399 (2015). https://doi.org/10.1208/s12248-014-9690-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-014-9690-8

KEY WORDS

Navigation