1 Introduction

This article concerned with initial-boundary problem whose model is

$$ \textstyle\begin{cases} \min\{ Lu,u(x,0) - {u_{0}}(x)\} = 0,& (x,t) \in{Q_{T}},\\ u(x,t) = 0,& (x,t) \in{\Gamma_{T}},\\ u(x,0) = {u_{0}}(x),& x \in\Omega, \end{cases} $$
(1)

with

$$Lu = {u_{t}} - \operatorname{div}\bigl( {a(u){{ \vert {\nabla u} \vert }^{p(x,t) - 2}}\nabla u} \bigr) - f(x,t),\quad a(u) = {u^{\sigma}} + {d_{o}}, $$

where \(\Omega \subset{\mathbb{R}^{+} }\) is a bounded simply connected domain, \({Q_{T}} = \Omega \times(0,T]\), and \({\Gamma_{T}}\) denotes the lateral boundary of the cylinder \({Q_{T}}\).

This type of variational inequality was studied initially by Chen and Yi [1], who proposed the equation

$$ \textstyle\begin{cases} \frac{\partial}{{\partial\tau}}V - \frac{1}{2}{\sigma^{2}}\frac {{{\partial^{2}}}}{{\partial{x^{2}}}}V - ( {r - \frac{1}{2}{\sigma^{2}}} )\frac{\partial}{{\partial x}}V + rV \ge0 &\text{in } {\Omega_{T}},\\ V \ge g(x), &\text{in } {\Omega_{T}},\\ ( {\frac{\partial}{{\partial\tau}}V - \frac{1}{2}{\sigma^{2}}\frac {{{\partial^{2}}}}{{\partial{x^{2}}}}V - ( {r - \frac{1}{2}{\sigma^{2}}} )\frac{\partial}{{\partial x}}V + rV} )(V - g(x)) = 0 &\text{in }{\Omega_{T}},\\ V(t,x) = 0 &\text{on } \partial{\Omega_{T}},\\ V(x,0) = g(x) &\text{in } \Omega \end{cases} $$
(2)

for modeling the American option. When r and σ are positive constant, the existence and uniqueness of solutions to problem (4) were also studied in [24].

In 2014, the authors in [5] discussed the problem

$$\textstyle\begin{cases} {u_{t}} - Lu - F(x,t,u,\nabla u) \ge0&\text{in }{Q_{T}},\\ u(x,t) \ge{u_{0}}(x)& \text{in } {Q_{T}},\\ ( {{u_{t}} - Lu - F(x,t,u,\nabla u)} )(u - {u_{0}}(x)) = 0 &\text{in } {Q_{T}},\\ u(x,0) = {u_{0}}(x) &\text{on } \Omega,\\ u(x,t) = g(x) &\text{on } \partial\Omega \times(0,T) \end{cases} $$

with second-order elliptic operator

$$L(x,t) = \sum_{i,j = 1}^{d} { \frac{\partial}{{\partial{x_{j}}}}} \biggl( {{a^{ij}}(x,t)\frac{\partial}{{\partial{x_{i}}}}} \biggr) - \sum_{i,j = 1}^{d} {{b^{i}}(x,t) \frac{\partial}{{\partial{x_{i}}}}} - c(x,t). $$

They proved the existence and uniqueness of a solution to this problem with some conditions on \({u_{0}}\), F, and L. Later, the authors in [6, 7] extended the relative conclusions with the assumption that \(a(u)\) and \(p(x)\) are two positive constants. The author discussed the existence and uniqueness of a solution by the penalty method.

The existence and uniqueness of such a problem with the assumption that \(p(x)\) and \(a(u)\) are variables were less studied.

The aim of this paper is to study the existence and uniqueness of solutions for a degenerate parabolic variational inequality problem. Throughout the paper, we assume that the exponent \(p(x,t)\) is continuous in \(Q = \overline{{Q_{T}}} \) with logarithmic module of continuity:

$$\begin{aligned}& 1 < {p^{-} } = \inf_{(x,t) \in Q} p(x,t) \le p(x,t) \le{p^{+} } = \sup _{(x,t) \in Q} p(x,t) < \infty, \end{aligned}$$
(3)
$$\begin{aligned}& \forall z = (x,t) \in Q,\qquad \xi = (y,s) \in{Q_{T}},\qquad \vert {z - \xi} \vert < 1,\qquad \bigl\vert {p(z) - p(\xi)} \bigr\vert \le\omega \bigl( \vert {z - \xi} \vert \bigr), \end{aligned}$$
(4)

where

$$\mathop{\lim\sup}\limits _{\tau \to{0^{+} }} \omega(\tau)\ln\frac {1}{\tau} = C < + \infty. $$

The outline of this paper is as follows. In Section 2, we introduce the function spaces of Orlicz-Sobolev type, give the definition of a weak solution to the problem, and prove the existence and uniqueness. Section 3 is devoted to the proof of the existence and uniqueness of the solution obtained in Section 2.

2 Basic spaces and the main results

To study our problems, let us introduce the Banach spaces:

$$\begin{aligned}& {L^{p(x,t)}}({Q_{T}}) = \biggl\{ u(x,t) \Big\vert u \text{ is measurable in } {Q_{T}},{A_{p(\cdot)}}(u) = \int {\int_{{Q_{T}}} {{{\left| u \right|}^{p(x,t)}}\, {\mathrm{d}}x\, {\mathrm{d}}t < \infty } } \biggr\} , \\& { \Vert u \Vert _{p(\cdot)}} = \inf\bigl\{ \lambda > 0,{A_{p(\cdot)}}(u/\lambda) \le1\bigr\} , \\& {V_{t}}(\Omega) = \bigl\{ u \vert {u \in{L^{2}}(\Omega) \cap W_{0}^{1,1}(\Omega)}, \vert {\nabla u} \vert \in {L^{p(x,t)}}(\Omega)\bigr\} ,\qquad { \Vert u \Vert _{{V_{t}}(\Omega)}} = { \Vert u \Vert _{2,\Omega}} + { \vert {\nabla u} \vert _{p(\cdot )\Omega}}, \\& W({Q_{t}}) = \bigl\{ u:[0,T] \mapsto{V_{t}}(\Omega) \vert {u \in {L^{2}}({Q_{t}})}, \vert {\nabla u} \vert \in {L^{p(x,t)}}({Q_{T}}),u = 0\text{ on } {\Gamma_{T}} \bigr\} , \\& { \Vert u \Vert _{W({Q_{t}})}} = { \Vert u \Vert _{2,{Q_{T}}}} + { \vert {\nabla u} \vert _{p(x,t),{Q_{T}}}} \end{aligned}$$

and denote by \(W'({Q_{T}})\) the dual of \(W({Q_{T}})\) with respect to the inner product in \({L^{2}}({Q_{T}})\).

In spirit of [3] and [4], we introduce the following maximal monotone graph:

$$G(\lambda) = \textstyle\begin{cases} 0,& \lambda > 0,\\ [0,+\infty),& \lambda = 0. \end{cases} $$

In addition, we define the following function class for the solution:

$$B = \bigl\{ {u \in W({Q_{T}}) \cap{L^{\infty}} \bigl(0,T;{L^{\infty}}(\Omega)\bigr)} \bigr\} . $$

Definition 2.1

A pair \((u,\xi) \in B \times{L^{\infty}}({\Omega_{T}})\) is called a weak solution of problem (1) if (a) \(u(x,t) \le{u_{0}}(x)\), (b) \(u(x,0) = {u_{0}}(x)\), (c) \(\xi \in G(u - {u_{0}})\), (d) for all \({t_{1}},{t_{2}} \in[0,T]\), the following identity holds:

$$\int_{{t_{1}}}^{{t_{2}}} \int_{\Omega}\bigl[u{\varphi_{t}} - \bigl({u^{\sigma}} + {d_{0}}\bigr){{ \vert {\nabla u} \vert }^{p(x,t) - 2}}\nabla u\nabla\varphi + f(x,t)\varphi - \xi\varphi\bigr] \,\mathrm{d}x\,\mathrm{d}t = \int_{\Omega}{u\varphi\,\mathrm{d}x \bigg\vert _{{t_{1}}}^{{t_{2}}}}. $$

The main theorem in this section is the following:

Theorem 2.1

Let \(p(x,t)\) satisfy conditions (3)(4). Suppose also that the following conditions hold:

(\(H_{1}\)):

\(\max\{ {1,\frac{{2N}}{{N + 2}}} \} < {p^{-} } < N\), \(2 \le\sigma < \frac {{2{p^{+} }}}{{{p^{+} } - 1}}\),

(\(H_{2}\)):

\({u_{0}} \ge0\), \(f \ge0\), \({ \Vert {{u_{0}}} \Vert _{\infty,\Omega}} + \int_{0}^{T} {{{ \Vert {f(x,t)} \Vert}_{\infty,\Omega}}} \,\mathrm{d}t = K(T) < \infty\).

Then problem (1) has at least one weak solution in the sense of Definition 2.1.

Theorem 2.2

Suppose that the conditions in Theorem 2.1 are fulfilled and \({p^{+} } \ge2\). Then problem (1) admits a unique solution in the sense of Definition 2.1.

3 Proof of the main results

In this section, we consider the family of auxiliary parabolic problems

$$ \textstyle\begin{cases} {L_{\varepsilon}}{u_{\varepsilon}} + {\beta_{\varepsilon}}({u_{\varepsilon}} - {u_{0}}) = 0, & (x,t) \in{Q_{T}},\\ u(x,t) = \varepsilon, & (x,t) \in{\Gamma_{T}},\\ u(x,0) = {u_{0}}(x) + \varepsilon, & x \in\Omega. \end{cases} $$
(5)

Here, M is a positive parameter to be chosen later. Moreover,

$$\begin{aligned}& {L_{\varepsilon}} {u_{\varepsilon}} = {\partial_{t}} {u_{\varepsilon}} - \operatorname{div}\bigl( {{a_{\varepsilon,M}}({u_{\varepsilon}}){{ \vert {\nabla{u_{\varepsilon}}} \vert }^{p(x,t) - 2}}\nabla {u_{\varepsilon}}} \bigr) - f(x,t), \\& 0 < {d_{0}} \le{a_{\varepsilon,M}}(u) = {\bigl(\min\bigl({ \vert u \vert ^{2}},{M^{2}}\bigr) + {\varepsilon^{2}} \bigr)^{\frac{\sigma}{2}}} + {d_{0}} \le \bigl({M^{2}} + 1\bigr) + {d_{0}},\quad 0 < \varepsilon < 1, \end{aligned}$$

and \({\beta_{\varepsilon}}( \cdot)\) is the penalty function satisfying

$$ \begin{gathered} 0 < \varepsilon \le1,\qquad {\beta_{\varepsilon}}(x) \in{C^{2}}(R),\qquad {\beta _{\varepsilon}}(x) \le0,\qquad {\beta_{\varepsilon}}(0) = - 1, \\ {\beta'_{\varepsilon}}(x) \ge0,\qquad {\beta''_{\varepsilon}}(x) \le0,\qquad \lim_{\varepsilon \to0} {\beta_{\varepsilon}}(x) = \textstyle\begin{cases} 0, & x > 0,\\ - \infty, & x < 0. \end{cases}\displaystyle \end{gathered} $$
(6)

Following a similar method as in [6], we can prove that the regularized problem has a unique weak solution \({u_{\varepsilon}}(x,t) \in W({Q_{T}}) \cap{L^{2}}({Q_{T}})\), \({\partial _{t}}{u_{\varepsilon}}(x,t) \in W'({Q_{T}})\) satisfying the following integral identities:

$$ \begin{aligned}[b] & \int_{{t_{1}}}^{{t_{2}}} { \int_{\Omega}{\bigl[{u_{\varepsilon}} {\varphi_{t}} - {a_{\varepsilon}},M({u_{\varepsilon}}){{ \vert {\nabla {u_{\varepsilon}}} \vert }^{p(x,t) - 2}}\nabla{u_{\varepsilon}}\nabla\varphi + f(x,t)\varphi \bigr]\,\mathrm{d}x\,\mathrm{d}t} } \\ &\quad = \int_{{t_{1}}}^{{t_{2}}} { \int_{\Omega}{{\beta_{\varepsilon}}({u_{\varepsilon}} - {u_{0}})\varphi\,\mathrm{d}x\,\mathrm{d}t} } + \int _{\Omega}{{u_{\varepsilon}}\varphi\,\mathrm{d}x} \bigg\vert _{{t_{1}}}^{{t_{2}}} \end{aligned} $$
(7)

and

$$ \int_{{t_{1}}}^{{t_{2}}} \int_{\Omega}\bigl[({\partial_{t}} {u_{\varepsilon}})\varphi + {a_{\varepsilon,M}}({u_{\varepsilon}}){{ \vert {\nabla u} \vert }^{p(x,t) - 2}}\nabla{u_{\varepsilon}}\nabla \varphi - f(x,t)\varphi + { \beta_{\varepsilon}}({u_{\varepsilon}} - {u_{0}})\varphi\bigr] \,\mathrm{d}x\,\mathrm{d}t = 0. $$
(8)

We start with two preliminary results that will be used several times.

Lemma 3.1

Let \(M(s) = {| s |^{p(x,t) - 2}}s\). Then for all \(\xi,\eta \in\,\mathrm{R}^{N}\),

$$\begin{aligned}[b] &\bigl(M(\xi) - M(\eta)\bigr) (\xi - \eta) \\ &\quad \ge \textstyle\begin{cases} {2^{ - p(x,t)}}{ \vert {\xi - \eta} \vert ^{p(x,t)}},& 2 \le p(x,t) < \infty,\\ (p(x,t) - 1){ \vert {\xi - \eta} \vert ^{2}}{({ \vert \xi \vert ^{p(x,t)}} + { \vert \eta \vert ^{p(x,t)}})^{\frac{{p(x,t) - 2}}{{p(x,t)}}}}, & 1 < p(x,t) < 2. \end{cases}\displaystyle \end{aligned} $$

Lemma 3.2

(Comparison principle)

Assume that \(2 < \sigma < \frac{{2{p^{+} }}}{{{p^{+} } - 1}}\), \({p^{+} } \ge2\), and u and v are in \(W({Q_{T}}) \cap{L^{\infty}}(0,T;{L^{\infty}}(\Omega))\). If \({L_{\varepsilon}}u \ge{L_{\varepsilon}}v\) in \({Q_{T}}\) and if \(u(x,t) \le v(x,t)\) on \(\partial{Q_{T}}\), then \(u(x,t) \le v(x,t)\) in \({Q_{T}}\).

Proof

We argue by contradiction. Suppose \(u(x,t)\) and \(v(x,t)\) satisfy \({L_{\varepsilon}}u \ge{L_{\varepsilon}}v\) in \({Q_{T}}\) and there is \(\delta > 0\) such that for \(0 < \tau \le T\), \(w = u - v > \delta\) on the set \({\Omega_{\delta}} = \Omega \cap\{ x:w(x,t) > \delta\} \), and \(\mu({\Omega_{\delta}}) > 0\). Let

$${F_{\varepsilon}}(\xi) = \textstyle\begin{cases} \frac{1}{{\alpha - 1}}{\varepsilon^{1 - \alpha}} - \frac{1}{{\alpha - 1}}{\xi^{1 - \alpha}}& \text{if }\xi > \varepsilon,\\ 0& \text{if }\xi \le\varepsilon, \end{cases} $$

where \(\delta > 2\varepsilon > 0\) and \(\alpha = \frac{\sigma}{2}\). Let a test-function \(\xi = {F_{\varepsilon}}(w) \in Z\) in (8). Then

$$ \begin{aligned}[b] 0 &\ge \int{ \int_{{Q_{T}}} {\bigl[{w_{t}} {F_{\varepsilon}}(w) + \bigl({v^{\sigma}} + {d_{0}}\bigr) \bigl({{ \vert {\nabla u} \vert }^{p(x,t) - 2}}\nabla u - {{ \vert {\nabla v} \vert }^{p(x,t) - 2}}\nabla v\bigr)\nabla {F_{\varepsilon}}(w)\bigr]\,\mathrm{d}x \,\mathrm{d}t} } \\ &\quad{}+ \int{ \int_{{Q_{T}}} {\bigl({u^{\sigma}} - {v^{\sigma}} \bigr){{ \vert {\nabla u} \vert }^{p(x,t) - 2}}\nabla u\nabla {F_{\varepsilon}}(w)\,\mathrm{d}x\,\mathrm{d}t} } = {J_{1}} + {J_{2}} + {J_{3}}, \end{aligned} $$
(9)

where \({Q_{\varepsilon,\tau}} = {Q_{\tau}} \cap\{ (x,t) \in{Q_{\tau}}| {w > \varepsilon} \} \),

$$\begin{aligned}& {J_{1}} = \int{ \int_{{Q_{T}}} {{w_{t}} {F_{\varepsilon}}(w)\,\mathrm{d}x \,\mathrm {d}t} }, \qquad{J_{2}} = \int{ \int_{{Q_{T}}} {\bigl({u^{\sigma}} - {v^{\sigma}} \bigr){w^{ - \alpha}} {{ \vert {\nabla u} \vert }^{p(x,t) - 2}}\nabla u \nabla w\,\mathrm{d}x\,\mathrm{d}t} }, \\& {J_{3}} = \int{ \int_{{Q_{T}}} {\bigl({v^{\sigma}} + {d_{0}} \bigr){w^{ - \alpha}}\bigl({{ \vert {\nabla u} \vert }^{p(x,t) - 2}} \nabla u - {{ \vert {\nabla v} \vert }^{p(x,t) - 2}}\nabla v\bigr)\nabla w \,\mathrm {d}x\,\mathrm{d}t} }. \end{aligned}$$

Now, let \({t_{0}} = \inf\{ t \in(0,\tau]:w > \varepsilon\} \). Then we estimate \({J_{1}}\), \({J_{2}}\), and \({J_{3}}\) as follows:

$$ \begin{aligned}[b] {J_{1}} &= \int{ \int_{{Q_{\varepsilon,\tau}}} {{w_{t}} {F_{\varepsilon}}(w)\,\mathrm{d}x \,\mathrm{d}t} = \int_{\Omega}{\biggl( \int_{0}^{{t_{0}}} {{w_{t}} {F_{\varepsilon}}(w) \,\mathrm{d}t} + \int_{{t_{0}}}^{\tau}{{w_{t}} {F_{\varepsilon}}(w)\,\mathrm{d}t} \biggr)} } \,\mathrm{d}x \\ &\ge \int_{\Omega}{ \int_{\varepsilon}^{w(x,\tau)} {{F_{\varepsilon}}(s)\,\mathrm{d}s \,\mathrm{d}x} \ge} \int_{{\Omega_{\delta}}} { \int _{\varepsilon}^{w(x,\tau)} {{F_{\varepsilon}}(s)\,\mathrm{d}s \,\mathrm{d}x} } \\ &\ge \int_{{\Omega_{\delta}}} {(w - 2\varepsilon)} {F_{\varepsilon}}(2 \varepsilon)\,\mathrm{d}x \ge(\delta - 2\varepsilon){F_{\varepsilon}}(2 \varepsilon)\mu({\Omega_{\delta}}). \end{aligned} $$
(10)

Let us first consider the case \({p^{-} } \ge2\). By the first inequality of Lemma 3.1 we get

$$ \begin{aligned}[b] {J_{2}} &= \int{ \int_{{Q_{\varepsilon,\tau}}} {\bigl({v^{\sigma}} + {d_{0}} \bigr){w^{ - \alpha}}\bigl({{ \vert {\nabla u} \vert }^{p(x,t) - 2}} \nabla u - {{ \vert {\nabla v} \vert }^{p(x,t) - 2}}\nabla v\bigr)\nabla w \,\mathrm{d}x\,\mathrm{d}t} } \\ &\ge \int{ \int_{{Q_{\varepsilon,\tau}}} {\bigl({v^{\sigma}} + {d_{0}} \bigr){w^{ - \alpha}} {2^{ - p(x,t)}} {{ \vert {\nabla w} \vert }^{p(x,t)}}\,\mathrm{d}x\,\mathrm{d}t} } \\ &\ge{2^{ - {p^{+} }}} \int{ \int_{{Q_{\varepsilon,\tau}}} {\bigl({v^{\sigma}} + {d_{0}} \bigr){w^{ - \alpha}} {{ \vert {\nabla w} \vert }^{p(x,t)}} \,\mathrm{d}x\,\mathrm{d}t} } \ge0. \end{aligned} $$
(11)

Noting that \(\frac{{p(x,t)}}{{p(x,t) - 1}} \ge\frac{{{p^{+} }}}{{{p^{+} } - 1}} \ge\frac{\sigma}{2} = \alpha > 1\) and applying Young’s inequality, we can estimate the integrand of \({J_{3}}\) in the following way:

$$ \begin{aligned}[b] & \bigl\vert {\bigl({u^{\sigma}} - {v^{\sigma}}\bigr){w^{ - \alpha}}} { \vert {\nabla w} \vert ^{p(x,t) - 2}} {\nabla u\nabla w} \bigr\vert \\ &\quad= \biggl\vert {\sigma w \int_{0}^{1} {{{\bigl(\theta u + (1 - \theta )v \bigr)}^{\sigma - 1}}\,d\theta{w^{ - \alpha}} {{ \vert {\nabla w} \vert }^{p(x,t) - 2}}\nabla u\nabla w} } \biggr\vert \\ &\quad\le\frac{C}{{{w^{\alpha}}}}\biggl[\frac{{{v^{\sigma}} + {d_{0}}}}{C}\biggr]{ \vert {\nabla w} \vert ^{p(x,t)}} + {C_{1}}\bigl(\sigma,{d_{0}},K(T),{p^{\pm}} \bigr){ \vert w \vert ^{p'(x,t)}} { \vert {\nabla u} \vert ^{p(x,t)}}] \\ &\quad= \frac{{({v^{\sigma}} + {d_{0}})}}{{{2^{{p^{+} } + 1}}{w^{\alpha}}}}{ \vert {\nabla w} \vert ^{p(x,t)}} + {C_{1}}\bigl(\sigma,{d_{0}},K(T),{p^{\pm}}\bigr){ \vert w \vert ^{p'(x,t) - \alpha }} { \vert {\nabla u} \vert ^{p(x,t)}} \\ &\quad\le\frac{{({v^{\sigma}} + {d_{0}})}}{{{2^{{p^{+} } + 1}}{w^{\alpha}}}}{ \vert {\nabla w} \vert ^{p(x,t)}} + {C_{1}}\bigl(\sigma,{d_{0}},K(T),{p^{\pm}}\bigr){ \vert {\nabla u} \vert ^{p(x,t)}}. \end{aligned} $$
(12)

Substituting (12) into \(J_{3}\), we get

$$ {J_{3}} \le\frac{1}{2}{J_{2}} + C{ \int{ \int_{{Q_{\varepsilon,\tau}}} { \vert {\nabla u} \vert } } ^{p(x,t)}} \,\mathrm{d}x\,\mathrm {d}t. $$
(13)

Second, we consider the case \(1 < {p^{-} } \le p(x,t) < 2\), \({p^{+} } \ge2\). According to the second inequality of Lemma 3.1, it is easily seen that the following inequalities hold:

$$ \begin{aligned}[b] {J_{2}} = \int{ \int_{{Q_{\varepsilon,\tau}}} {\bigl({v^{\sigma}} + {d_{0}} \bigr){w^{ - \alpha}}\bigl({{ \vert {\nabla w} \vert }^{p(x,t) - 2}} \nabla u - {{ \vert {\nabla v} \vert }^{p(x,t) - 2}}\nabla v\bigr)\nabla w \,\mathrm{d}x\,\mathrm{d}t} } \\ \ge\bigl({p^{-} } - 1\bigr) \int{ \int_{{Q_{\varepsilon,\tau}}} {\bigl({v^{\sigma}} + {d_{0}} \bigr){w^{ - \alpha}} {{\bigl( \vert {\nabla w} \vert + \vert {\nabla v} \vert \bigr)}^{p(x,t) - 2}} {{ \vert {\nabla w} \vert }^{2}} \,\mathrm{d}x\,\mathrm{d}t} }. \end{aligned} $$
(14)

Using the conditions \(1 < \alpha \le\frac{{{p^{+} }}}{{{p^{+} } - 1}} \le2\) and Young’s inequality, we can evaluate the integrand of \(J_{3}\) as follows:

$$ \begin{aligned}[b] & \bigl\vert {\bigl({u^{\sigma}} - {v^{\sigma}}\bigr){w^{ - \alpha}} {{ \vert {\nabla w} \vert }^{p(x,t) - 2}}\nabla u\nabla w} \bigr\vert \\ &\quad = \biggl\vert {\sigma w \int_{0}^{1} {{{\bigl(\theta u + (1 - \theta )v \bigr)}^{\sigma - 1}}\,d\theta{w^{ - \alpha}} {{ \vert {\nabla w} \vert }^{p(x,t) - 2}}\nabla u\nabla w} } \biggr\vert \\ &\quad \le\frac{{({v^{\sigma}} + {d_{0}})({p^{-} } - 1)}}{{2{w^{\alpha}}}}{\bigl( \vert {\nabla w} \vert + \vert {\nabla v} \vert \bigr)^{p(x,t) - 2}} { \vert {\nabla w} \vert ^{2}} \\ &\qquad{} + {C_{1}}\bigl(\sigma,{d_{0}},K(T),{p^{\pm}} \bigr){ \vert w \vert ^{2 - \alpha}} \vert {\nabla w} \vert + \vert { \nabla v} \vert {)^{p(x,t)}}. \end{aligned} $$
(15)

Plugging (15) into \(J_{3}\), we get

$$ {J_{3}} \le\frac{1}{2}{J_{2}} + C \int{ \int_{{Q_{\varepsilon,\tau}}} { \vert {\nabla w} \vert + \vert {\nabla v} \vert {)^{p(x,t)}}} } \,\mathrm{d}x\,\mathrm{d}t. $$
(16)

Plugging estimates (10), (11), (13) and (10), (14), (16) into (9) and dropping the nonnegative terms, we arrive at the inequality

$$ (\delta - 2\varepsilon) \bigl(1 - {2^{1 - \alpha}}\bigr){\varepsilon^{1 - \alpha}} \mu({\Omega_{\delta}}) \le\tilde{C} $$
(17)

with a constant independent of ε.

Notice that \({\lim_{\varepsilon \to0}}(\delta - 2\varepsilon)(1 - {2^{1 - \alpha}}){\varepsilon^{1 - \alpha}}\mu({\Omega_{\delta}}) = + \infty\), a contradiction. This means that \(\mu({\Omega_{\delta}}) = 0\) and \(w \le0\) a.e. in \({Q_{\tau}}\). □

Lemma 3.3

Let \({u_{\varepsilon}}\) be weak solutions of (5). Then

$$\begin{aligned}& {u_{0\varepsilon}} \le{u_{\varepsilon}} \le{ \vert {{u_{0}}} \vert _{\infty}} + \varepsilon, \end{aligned}$$
(18)
$$\begin{aligned}& {u_{{\varepsilon_{1}}}} \le{u_{{\varepsilon_{2}}}} \quad \textit{for } { \varepsilon_{1}} \le{\varepsilon_{2}}. \end{aligned}$$
(19)

Proof

First, we prove \({u_{\varepsilon}} \ge{u_{0\varepsilon}}\) by contradiction. Assume that \({u_{\varepsilon}} \le{u_{0\varepsilon}}\) in \(Q_{T}^{0}\), \(Q_{T}^{0} \subset {Q_{T}}\). Noting that \({u_{\varepsilon}} \ge{u_{0\varepsilon}}\) on \(\partial{Q_{T}}\), we may assume that \({u_{\varepsilon}} = {u_{0\varepsilon}}\) on \(\partial Q_{T}^{0}\). With (5) and letting \(t = 0\), we deduce that

$$\begin{aligned}& L{u_{0\varepsilon}} = {\beta_{\varepsilon}}({u_{0\varepsilon}} - {u_{0\varepsilon}}) = - 1, \end{aligned}$$
(20)
$$\begin{aligned}& L{u_{\varepsilon}} = {\beta_{\varepsilon}}({u_{\varepsilon}} - {u_{0\varepsilon}}) \le - 1. \end{aligned}$$
(21)

From Lemma 3.2 we conclude that

$$ u(x,t) \le{u_{0\varepsilon}}(x) \quad \text{for any } (x,t) \in { \Omega_{T}}, $$
(22)

obtaining a contradiction.

Second, we pay attention to \({u_{\varepsilon}}(t,x) \le{| {{u_{0}}} |_{\infty}} + \varepsilon\). Applying the definition of \({\beta_{\varepsilon}}( \cdot )\), we have

$$ L\bigl( {{{ \vert {{u_{0}}} \vert }_{\infty}} + \varepsilon} \bigr) = 0, \quad L{u_{\varepsilon}} \le0. $$
(23)

From (5) it is easy to prove that \({u_{\varepsilon}}(x,t) \ge \varepsilon\) on \(\partial\Omega \times(0,T)\) and \({u_{0\varepsilon}}(x) \ge\varepsilon\) in Ω. Thus, combining (21) and (23) and repeating Lemma 3.3, we have

$$ {u_{\varepsilon}}(x,t) \ge\varepsilon \quad\text{in } \Omega \times (0,T). $$
(24)

Third, we aim to prove (19). Since

$$\begin{aligned}& L{u_{{\varepsilon_{1}}}} - {\beta_{{\varepsilon_{1}}}}({u_{0{\varepsilon _{1}}}} - {u_{{\varepsilon_{1}}}}) = 0, \end{aligned}$$
(25)
$$\begin{aligned}& L{u_{{\varepsilon_{2}}}} - {\beta_{{\varepsilon_{2}}}}({u_{0{\varepsilon _{2}}}} - {u_{{\varepsilon_{2}}}}) = 0. \end{aligned}$$
(26)

It follows by \({\varepsilon_{1}} \le{\varepsilon_{2}}\) and the definition of \({\beta_{\varepsilon}}( \cdot )\) that

$$ \begin{aligned}[b] &{\partial_{t}} {u_{{\varepsilon_{2}}}} - L{u_{{\varepsilon_{2}}}} - {\beta _{{\varepsilon_{1}}}}({u_{0{\varepsilon_{1}}}} - {u_{{\varepsilon_{2}}}}) \\ &\quad={\beta_{{\varepsilon_{2}}}}({u_{0{\varepsilon_{2}}}} - {u_{{\varepsilon_{2}}}}) - { \beta_{{\varepsilon_{1}}}}({u_{0{\varepsilon _{1}}}} - {u_{{\varepsilon_{2}}}}) \ge{ \beta_{{\varepsilon _{2}}}}({u_{0{\varepsilon_{2}}}} - {u_{{\varepsilon_{2}}}}) - {\beta _{{\varepsilon_{1}}}}({u_{0{\varepsilon_{2}}}} - {u_{{\varepsilon_{2}}}}) \ge0. \end{aligned} $$
(27)

Thus, Lemma 3.3 can be proved by combining initial and boundary conditions in (5). □

Moreover, with (18), we assert that there exists a subsequence ε (still denoted by ε) such that

$$\begin{aligned}& {u_{\varepsilon}} \to u \in{L^{p}}\bigl(0,T;W_{0}^{1,p}({ \Omega_{T}})\bigr) \quad \text{as } \varepsilon \to0, \end{aligned}$$
(28)
$$\begin{aligned}& {u_{\varepsilon}} \ge u \ge0 \quad \text{for any } \varepsilon > 0. \end{aligned}$$
(29)

Lemma 3.4

Let \({u_{\varepsilon}}\) be a solution of problem (5). For any \(\varepsilon > 0\), we have

$$ { \Vert {{u_{\varepsilon}}} \Vert _{\infty,{Q_{T}}}} \le{ \Vert {{u_{0}}} \Vert _{\infty,\Omega}} + \int_{0}^{T} {{{ \bigl\Vert {f(x,t)} \bigr\Vert }_{\infty,\Omega}}\,\mathrm{d}t} = K(T) < \infty. $$
(30)

Proof

Define

$${u_{\varepsilon M}} = \textstyle\begin{cases} M & \text{if } {u_{\varepsilon}} > M,\\ {u_{\varepsilon}} & \text{if } \vert {{u_{\varepsilon}}} \vert \le M,\\ - M &\text{if } {u_{\varepsilon}} < - M. \end{cases} $$

Choosing \(u_{\varepsilon M}^{2k - 1}\) as a test-function in (8) and letting \({t_{1}} = t\) and \({t_{2}} = t + h\), we conclude that

$$ \begin{aligned}[b] &\frac{1}{{2k}} \int_{t}^{t + h} {\frac{\mathrm{d}}{{\mathrm{d}t}}\biggl( { \int _{\Omega}{u_{\varepsilon M}^{2k}\,dx} } \biggr)} \,\mathrm{d}t + \int_{t}^{t + h} { \int_{\Omega}{(2k - 1){a_{\varepsilon,M}}({u_{\varepsilon M}})} } u_{\varepsilon M}^{2(k - 1)}{ \vert {\nabla{u_{\varepsilon M}}} \vert ^{p(x,t)}}\,\mathrm{d}x\,\mathrm{d}t \\ &\quad = \int_{t}^{t + h} { \int_{\Omega}{fu_{\varepsilon M}^{2k - 1}\,\mathrm{d}x \,\mathrm{d}t} - \int_{t}^{t + h} { \int_{\Omega}{{\beta _{\varepsilon}}u_{\varepsilon M}^{2k - 1} \,\mathrm{d}x} } }. \end{aligned} $$
(31)

Letting \(h \to0\) and applying Lebesgue’s dominated convergence theorem, we have that, for all \(t \in(0,T)\),

$$ \begin{aligned}[b] &\frac{1}{{2k}}\frac{\mathrm{d}}{{\mathrm{d}t}} \int_{\Omega}{u_{\varepsilon M}^{2k}\,\mathrm{d}x} + \int_{\Omega}{(2k - 1){a_{\varepsilon,M}}({u_{\varepsilon M}})} u_{\varepsilon M}^{2(k - 1)}{ \vert {\nabla{u_{\varepsilon M}}} \vert ^{p(x,t)}}\,\mathrm{d}x \\ &\quad = \int_{\Omega}{fu_{\varepsilon M}^{2k - 1}\,\mathrm{d}x} - \int _{\Omega}{{\beta_{\varepsilon}}u_{\varepsilon M}^{2k - 1} \,\mathrm{d}x}. \end{aligned} $$
(32)

Using Holder’s inequality, we obtain

$$\begin{aligned}& \biggl\vert { \int_{\Omega}{fu_{\varepsilon M}^{2k - 1}\,dx} } \biggr\vert \le \bigl\Vert {{u_{\varepsilon M}}(\cdot,t)} \bigr\Vert _{2k,\Omega}^{2k - 1} \cdot{ \bigl\Vert {f(\cdot,t)} \bigr\Vert _{2k,\Omega}},\quad k = 1,2,\dots, \\& \biggl\vert { \int_{\Omega}{{\beta_{\varepsilon}}u_{\varepsilon M}^{2k - 1} \,\mathrm{d}x} } \biggr\vert \le \int_{\Omega}{u_{\varepsilon M}^{2k - 1}\,\mathrm{d}x} \le \bigl\Vert {{u_{\varepsilon M}}(\cdot,t)} \bigr\Vert _{2k,\Omega}^{2k - 1}, \end{aligned}$$

whence

$$ \begin{aligned}[b] & \Vert {{u_{\varepsilon M}}} \Vert _{2k,\Omega}^{2k - 1}\frac{\mathrm{d}}{{\mathrm{d}t}}\bigl({ \Vert {{u_{\varepsilon M}}} \Vert _{2k,\Omega}}\bigr) + (2k - 1) \int_{\Omega}{{a_{\varepsilon,M}}({u_{\varepsilon M}})} u_{\varepsilon M}^{2(k - 1)}{ \vert {\nabla{u_{\varepsilon,M}}} \vert ^{p(x,t)}}\,\mathrm{d}x \\ &\quad \le \Vert {{u_{\varepsilon M}}} \Vert _{2k,\Omega }^{2k - 1} \cdot{ \bigl\Vert {f( \cdot,t)} \bigr\Vert _{2k,\Omega}} + C(T) \Vert {{u_{\varepsilon M}}} \Vert _{2k,\Omega}^{2k - 1},\quad k = 1,2,\dots. \end{aligned} $$
(33)

By integration over \((0, t)\), for all t, we have

$${ \bigl\Vert {{u_{\varepsilon M}}(\cdot,t)} \bigr\Vert _{2k,\Omega}} \le { \bigl\Vert {{u_{\varepsilon M}}(\cdot,0)} \bigr\Vert _{2k,\Omega}} + \int_{0}^{T} {{{ \Vert f \Vert }_{2k,\Omega}} \,\mathrm{d}t} + C(T),\quad \forall k \in\mathbb{N}. $$

Then, as \(k \to\infty\),

$$\begin{aligned}[b] { \bigl\Vert {{u_{\varepsilon M}}(\cdot,t)} \bigr\Vert _{\infty,\Omega }} &\le{ \bigl\Vert {{u_{\varepsilon M}}(\cdot,0)} \bigr\Vert _{\infty,\Omega}} + \int_{0}^{T} {{{ \Vert f \Vert }_{\infty,\Omega}} \,\mathrm{d}t} \\ &\le{ \Vert {{u_{0}}} \Vert _{\infty,\Omega}} + \int_{0}^{T} {{{ \Vert f \Vert }_{\infty,\Omega}} \,\mathrm{d}t} + C(T) = K(T). \end{aligned} $$

 □

If we chose \(M > K(T)\) then \({u_{\varepsilon M}}(\cdot,t) \le\sup| {{u_{\varepsilon M}}(\cdot,t)} | \le K(T) < M\), and therefore \({u_{\varepsilon M}}(\cdot,t) = {u_{\varepsilon}}(\cdot,t)\).

Corollary 3.1

Choosing M large enough, we have

$$\min\bigl\{ u_{\varepsilon}^{2},{M^{2}}\bigr\} = u_{\varepsilon}^{2} \quad \textit{and}\quad {a_{\varepsilon,M}} \bigl(u_{\varepsilon M}\bigr) = {a_{\varepsilon,M}}({a_{\varepsilon}}) = \bigl({\varepsilon^{2}} + u_{\varepsilon}^{2} \bigr)^{\sigma/ 2} + {d_{0}}. $$

Corollary 3.2

If \({u_{0}} \ge0\) and \(f \ge0\), then the solution \({u_{\varepsilon}}(x,t)\) is nonnegative in \({Q_{T}}\).

Proof

Set \(u_{\varepsilon}^{-} = \min\{ {u_{\varepsilon}},0\} \). Then \(u_{\varepsilon}^{-} (x,0) = 0\), \(u_{\varepsilon}^{-} | {{\Gamma_{T}}} = 0\), and

$$\frac{1}{2}\frac{\mathrm{d}}{{\mathrm{d}t}}\bigl( \bigl\Vert {u_{\varepsilon}^{-} (x,t)} \bigr\Vert _{2,\Omega}^{2}\bigr) + \int_{\Omega}{{a_{\varepsilon,M}}({u_{\varepsilon}})} { \bigl\vert {\nabla u_{\varepsilon}^{-} } \bigr\vert ^{p(x,t)}}\,\mathrm{d}x \le0. $$

It follows that, for every \(t > 0\),

$$\bigl\Vert {u_{\varepsilon}^{-} (x,t)} \bigr\Vert _{2,\Omega} \le \bigl\Vert {u_{\varepsilon}^{-} (\cdot,0)} \bigr\Vert _{2,\Omega} = 0, $$

and the required assertion follows. □

Lemma 3.5

The solution of problem (5) satisfies the estimates

$$\begin{aligned}& { \int{ \int_{{Q_{T}}} {u_{\varepsilon}^{\sigma}{{ \vert {\nabla {u_{\varepsilon}}} \vert }^{p(x,t)}}\,\mathrm{d}x\,\mathrm{d}t \le K(T) \vert \Omega \vert } } ^{\frac{1}{2}}}, \end{aligned}$$
(34)
$$\begin{aligned}& {\varepsilon^{\sigma}} { \int{ \int_{{Q_{T}}} {{{ \vert {\nabla {u_{\varepsilon}}} \vert }^{p(x,t)}}\,\mathrm{d}x\,\mathrm{d}t \le K(T) \vert \Omega \vert } } ^{\frac{1}{2}}}, \end{aligned}$$
(35)
$$\begin{aligned}& {d_{0}} { \int{ \int_{{Q_{T}}} {{{ \vert {\nabla{u_{\varepsilon}}} \vert }^{p(x,t)}}\,\mathrm{d}x\,\mathrm{d}t \le K(T) \vert \Omega \vert } } ^{\frac{1}{2}}}. \end{aligned}$$
(36)

Proof

Similarly as in Lemma 3.4, we take \(k = 1\) in (32) to get

$$\frac{\mathrm{d}}{{\mathrm{d}t}}{ \bigl\Vert {{u_{\varepsilon}}(\cdot,t)} \bigr\Vert _{2,\Omega}} + \int_{\Omega}{{a_{\varepsilon,M}}({u_{\varepsilon}}){{ \vert {\nabla{u_{\varepsilon}}} \vert }^{p(x,t)}}\,\mathrm{d}x} \le{ \Vert f \Vert _{2,\Omega}} + C(T),\quad \forall t \in(0,T). $$

Clearly, integrating over \((0,t)\), we have

$$ { \bigl\Vert {{u_{\varepsilon}}(\cdot,t)} \bigr\Vert _{2,\Omega}} + \int _{0}^{t} { \int_{\Omega}{{a_{\varepsilon,M}}({u_{\varepsilon}}){{ \vert { \nabla{u_{\varepsilon}}} \vert }^{p(x,t)}}\,\mathrm{d}x} \,\mathrm{d}t \le} { \bigl\Vert {{u_{\varepsilon}}(\cdot,t)} \bigr\Vert _{2,\Omega}} + \int_{0}^{T} {{{ \Vert f \Vert }_{2,\Omega }} \,\mathrm{d}t} + C(T). $$
(37)

Note that the first term on the left-hand side is nonnegative. We drop the nonpositive term in (37) to get

$$\int_{0}^{t} { \int_{\Omega}{{a_{\varepsilon,M}}({u_{\varepsilon}}){{ \vert { \nabla{u_{\varepsilon}}} \vert }^{p(x,t)}}\,\mathrm{d}x} \,\mathrm{d}t \le} K(T){ \vert \Omega \vert ^{\frac{1}{2}}}. $$

If \({a_{\varepsilon,M}}({u_{\varepsilon}}) \ge{d_{0}}\), then we have inequality (36), and if \({a_{\varepsilon,M}}({u_{\varepsilon}}) \ge{\varepsilon^{\sigma}}\), then we have inequality (35) such that \(M > K(T)\), and we have \({a_{\varepsilon,M}}({u_{\varepsilon}}) \ge u_{\varepsilon}^{\sigma}\). Furthermore, we get inequality (34). □

Lemma 3.6

The solution of problem (5) satisfies the estimate

$$ { \Vert {{u_{\varepsilon t}}} \Vert _{W'({Q_{T}})}} \le C\bigl( { \sigma,{p^{\pm}},K(T), \vert \Omega \vert } \bigr). $$
(38)

Proof

From identity (7) we get

$$\begin{aligned}[b] \int{ \int_{{Q_{T}}} {{u_{\varepsilon t}}\xi\,\mathrm{d}x\,\mathrm{d}t} } &= - \int{ \int_{{Q_{T}}} {\bigl[{{\bigl(u_{\varepsilon}^{\sigma}+ { \varepsilon ^{2}}\bigr)}^{{\sigma / 2}}} + {d_{0}}\bigr]{{ \vert {\nabla{u_{\varepsilon}}} \vert }^{p(x,t) - 2}}} } \nabla{u_{\varepsilon}}\nabla\xi\,\mathrm {d}x\,\mathrm{d}t \\ &\quad{}+ \int{ \int_{{Q_{T}}} {f(x,t)\xi(x,t)\,\mathrm{d}x\,\mathrm{d}t} } - \int{ \int_{{Q_{T}}} {{\beta_{\varepsilon}}(x,t)\xi(x,t)\,\mathrm {d}x \,\mathrm{d}t} }. \end{aligned} $$

Applying the fact that \({\beta_{\varepsilon}}(x,t) \in(0,1)\), we get

$$\begin{aligned} \int{ \int_{{Q_{T}}} {{u_{\varepsilon t}}\xi\,\mathrm{d}x\,\mathrm{d}t} } &\le \int_{0}^{T} { \int_{\Omega}{\bigl[{{\bigl(u_{\varepsilon}^{\sigma}+ { \varepsilon ^{2}}\bigr)}^{{\sigma / 2}}} + {d_{0}}\bigr]{{ \vert {\nabla{u_{\varepsilon}}} \vert }^{p(x,t) - 1}}} } \nabla{u_{\varepsilon}}\nabla\xi\,\mathrm {d}x\,\mathrm{d}t\\ &\quad {} + \int_{0}^{T} { \int_{\Omega}{ \vert {f + 1} \vert \cdot \vert \xi \vert } } \,\mathrm{d}x\,\mathrm{d}t. \end{aligned} $$

Using the Hölder inequality repeatedly, we have that

$$\begin{aligned}[b] \int{ \int_{{Q_{T}}} {{u_{\varepsilon t}}\xi\,\mathrm{d}x\,\mathrm{d}t} } & \le2{ \bigl\Vert {\bigl[{{\bigl(u_{\varepsilon}^{\sigma}+ {\varepsilon ^{2}}\bigr)}^{{\sigma / 2}}} + {d_{0}}\bigr]{{ \vert { \nabla{u_{\varepsilon}}} \vert }^{p(x,t) - 1}}} \bigr\Vert _{p'(x,t)}} { \Vert {\nabla\xi} \Vert _{p(x,t)}}\\ &\quad {} + 2{ \Vert {f + 1} \Vert _{p'(x,t)}} \cdot{ \Vert \xi \Vert _{p(x,t)}} \\ &\le2\max\{ {F_{1}},{F_{2}}\} { \Vert {\nabla\xi} \Vert _{p(x,t)}} + 2\max\{ {{F_{3}},{F_{4}}} \}{ \Vert \xi \Vert _{p(x,t)}} \\ & \le\bigl(2{\bigl({\bigl({K^{2}}(T) + 1\bigr)^{{\sigma / 2}}} + {d_{0}}\bigr)^{\frac{1}{{{p^{\pm}} - 1}}}}K(T) \vert \Omega \vert + 2{ \vert {f + 1} \vert _{\infty}} \vert T \vert \bigr){ \Vert \xi \Vert _{W({Q_{T}})}}, \end{aligned} $$

where

$$\begin{aligned}& {F_{1}} = {\biggl( { \int_{0}^{T} { \int_{\Omega}{{{\bigl\{ {\bigl[{{\bigl(u_{\varepsilon}^{\sigma}+ {\varepsilon^{2}}\bigr)}^{{\sigma / 2}}} + {d_{0}}\bigr]{{ \vert {\nabla {u_{\varepsilon}}} \vert }^{p(x,t) - 1}}} \bigr\} }^{\frac {{p(x,t)}}{{p(x,t) - 1}}}}\,\mathrm{d}x\,\mathrm{d}t} } } \biggr)^{\frac{1}{{p' + }}}}, \\& {F_{2}} = {\biggl( { \int_{0}^{T} { \int_{\Omega}{{{\bigl\{ {\bigl[{{\bigl(u_{\varepsilon}^{\sigma}+ {\varepsilon^{2}}\bigr)}^{{\sigma / 2}}} + {d_{0}}\bigr]{{ \vert {\nabla {u_{\varepsilon}}} \vert }^{p(x,t) - 1}}} \bigr\} }^{\frac {{p(x,t)}}{{p(x,t) - 1}}}}\,\mathrm{d}x\,\mathrm{d}t} } } \biggr)^{\frac{1}{{p' - }}}}, \\& {F_{3}} = {\biggl( { \int_{0}^{T} { \int_{\Omega}{{{ \vert f \vert }^{p'(x,t)}}\,\mathrm{d}x \,\mathrm{d}t} } } \biggr)^{\frac{1}{{p' + }}}}, \qquad {F_{4}} = {\biggl( { \int_{0}^{T} { \int_{\Omega}{{{ \vert {f + 1} \vert }^{p'(x,t)}} \,\mathrm{d}x\,\mathrm{d}t} } } \biggr)^{\frac{1}{{p' - }}}}. \end{aligned}$$

Then (38) follows from Lemma 3.5. □

From [6] we can get the following inclusions:

$$\begin{aligned}& {u_{\varepsilon}} \in W({Q_{T}}) \subseteq{L^{{p^{-} }}} \bigl(0,T;W_{0}^{1,{p^{-} }}(\Omega)\bigr), \qquad {u_{\varepsilon t}} \in W'({Q_{T}}) \subseteq {L^{\frac{{{p^{+} }}}{{{p^{+} } - 1}}}}\bigl(0,T;{V_{+} }(\Omega)\bigr), \\& W_{0}^{1,{p^{-} }}(\Omega) \subset{L^{2}}(\Omega) \subset{V_{+} }^{\prime}(\Omega) \quad \text{with } {V_{+} }(\Omega) = \bigl\{ u(x)\vert {u \in{L^{2}}(\Omega) \cap W_{0}^{1,1}( \Omega)}, \vert {\nabla u} \vert \in{L^{{p^{+} }}}\bigr\} . \end{aligned}$$

These conclusions, together with the uniform estimates in ε, allow us to extract from the sequence \(\{ {u_{\varepsilon}}\} \) a subsequence (for simplicity, we assume that it merely coincides with the whole sequence) such that

$$ \textstyle\begin{cases} {u_{\varepsilon}} \to u & \mbox{a.e. in }{Q_{T}},\\ \nabla{u_{\varepsilon}} \to\nabla u &\text{weakly in }{L^{p(x,t)}}({Q_{T}}),\\ u_{\varepsilon}^{\sigma}{ \vert {\nabla{u_{\varepsilon}}} \vert ^{p(x,t) - 2}}{D_{i}}{u_{\varepsilon}} \to{A_{i}}(x,t) & \text{weakly in } {L^{p'(x,t)}}({Q_{T}}),\\ { \vert {\nabla{u_{\varepsilon}}} \vert ^{p(x,t) - 2}}{D_{i}}{u_{\varepsilon}} \to{W_{i}}(x,t) & \text{weakly in }{L^{p'(x,t)}}({Q_{T}}) \end{cases} $$
(39)

for some functions \(u \in W({Q_{T}})\), \({A_{i}}(x,t) \in {L^{p'(x,t)}}({Q_{T}})\), and \({W_{i}}(x,t) \in{L^{p'(x,t)}}({Q_{T}})\).

Lemma 3.7

For almost all \((x,t) \in{Q_{T}}\),

$$\lim_{\varepsilon \to{0^{+} }} \int{ \int_{{Q_{T}}} {\bigl({{\bigl(u_{\varepsilon}^{2} + { \varepsilon^{2}}\bigr)}^{\frac{\sigma}{2}}} - u_{\varepsilon}^{\sigma}\bigr){{ \vert {\nabla{u_{\varepsilon}}} \vert }^{p(x,t) - 2}} \nabla{u_{\varepsilon}}\nabla\xi\,\mathrm{d}x\,\mathrm{d}t = 0,\quad \forall\xi = W({Q_{T}})} }. $$

Proof

We first compute

$$\begin{aligned}[b] I &\stackrel{\Delta}{=} \int{ \int_{{Q_{T}}} {\bigl({{\bigl(u_{\varepsilon}^{2} + { \varepsilon^{2}}\bigr)}^{\frac{\sigma}{2}}} - u_{\varepsilon}^{\sigma}\bigr){{ \vert {\nabla{u_{\varepsilon}}} \vert }^{p(x,t) - 2}}\nabla {u_{\varepsilon}}\nabla\xi\,\mathrm{d}x\,\mathrm{d}t} } \\ & = \frac{\sigma}{2}{\varepsilon^{2}} \int{ \int_{{Q_{T}}} {\biggl( { \int_{0}^{1} {{{\bigl(u_{\varepsilon}^{2} + s{\varepsilon^{2}}\bigr)}^{\frac{{\sigma - 2}}{2}}}\,ds} } \biggr)} } { \vert { \nabla{u_{\varepsilon}}} \vert ^{p(x,t) - 2}}\nabla{u_{\varepsilon}}\nabla \xi\,\mathrm{d}x\,\mathrm{d}t \\ & \le\sigma{\varepsilon^{2}} {\bigl({K^{2}}(T) + 1 \bigr)^{{\frac{{\sigma - 2}}{2}}}} { \bigl\Vert {{{ \vert {\nabla{u_{\varepsilon}}} \vert }^{p(x,t) - 1}}} \bigr\Vert _{p'(x,t)}} { \Vert {\nabla\xi } \Vert _{p(x,t)}} \\ & \le C{\varepsilon^{2}}\max\biggl\{ {{{\biggl( \int{ \int_{{Q_{T}}} {{{ \vert {\nabla{u_{\varepsilon}}} \vert }^{p(x,t)}}\,\mathrm{d}x\,\mathrm{d}t} } \biggr)}^{\frac{{{p^{+} } - 1}}{{{p^{+} }}}}},{{\biggl( \int{ \int_{{Q_{T}}} {{{ \vert {\nabla {u_{\varepsilon}}} \vert }^{p(x,t)}}\,\mathrm{d}x\,\mathrm{d}t} } \biggr)}^{\frac{{{p^{-} } - 1}}{{{p^{-} }}}}}} \biggr\} { \Vert {\nabla\xi} \Vert _{p(x,t)}}. \end{aligned} $$

By (35) we get

$$I \le C{\varepsilon^{2 - \frac{{\sigma({p^{+} } - 1)}}{{{p^{+} }}}}} { \Vert {\nabla\xi} \Vert _{p(x,t)}}. $$

Passing to the limit as \(\varepsilon \to0\), we obtain Lemma 3.7. □

Lemma 3.8

For almost all \((x,t) \in{Q_{T}}\), we have

$${A_{i}}(x,t) = {u^{\sigma}} {W_{i}}(x,t),\quad i = 1,2, \dots,N. $$

Proof

In (39), letting \(\varepsilon \to0\), we have

$$\begin{aligned}& { \int \int_{{Q_{T}}} {u_{\varepsilon}^{\sigma} \vert {\nabla {u_{\varepsilon}}} \vert } ^{p(x,t) - 2}}\nabla{u_{\varepsilon}}\nabla \xi\,\mathrm{d}x\,\mathrm{d}t \to\sum{ \int{ \int_{{Q_{T}}} {{A_{i}}(x,t){D_{i}}\xi \,\mathrm{d}x\,\mathrm{d}t} } }, \end{aligned}$$
(40)
$$\begin{aligned}& { \int \int_{{Q_{T}}} {u_{\varepsilon}^{\sigma} \vert {\nabla {u_{\varepsilon}}} \vert } ^{p(x,t) - 2}}\nabla{u_{\varepsilon}}\nabla \xi\,\mathrm{d}x\,\mathrm{d}t \to\sum{ \int{ \int_{{Q_{T}}} {{W_{i}}(x,t){D_{i}}\xi \,\mathrm{d}x\,\mathrm{d}t} } }. \end{aligned}$$
(41)

By Lebesgue’s dominated convergence theorem we have

$$ \lim_{\varepsilon \to0} \sum_{i = 1}^{N} { \int{ \int_{{Q_{T}}} {\bigl(u_{\varepsilon}^{\sigma}- {u^{\sigma}}\bigr){A_{i}}(x,t){D_{i}}\xi\,\mathrm {d}x \,\mathrm{d}t = 0} }.} $$
(42)

So

$$\begin{aligned}[b] &\lim_{\varepsilon \to0} \sum{ \int{ \int_{{Q_{T}}} {\bigl(u_{\varepsilon}^{\sigma}{{ \vert { \nabla{u_{\varepsilon}}} \vert }^{p(x,t) - 2}} {D_{i}} {u_{\varepsilon}} - {u^{\sigma}} {W_{i}}(x,t) \bigr){D_{i}}\xi\,\mathrm {d}x\,\mathrm{d}t} } } \\ &\quad= \lim_{\varepsilon \to0} \int{ \int_{{Q_{T}}} {\bigl(u_{\varepsilon}^{\sigma}- {u^{\sigma}}\bigr){{ \vert {\nabla{u_{\varepsilon}}} \vert }^{p(x,t) - 2}} {D_{i}} {u_{\varepsilon}} + {u^{\sigma}} \bigl({{ \vert {\nabla{u_{\varepsilon}}} \vert }^{p(x,t) - 2}} {D_{i}} {u_{\varepsilon}} - {W_{i}}(x,t) \bigr){D_{i}}\xi\,\mathrm{d}x\,\mathrm{d}t} }\\ &\quad = 0. \end{aligned} $$

By (40)–(42) and the previous inequalities, we complete the proof of Lemma 3.8. □

Lemma 3.9

For almost all \((x,t) \in{Q_{T}}\), we have

$${W_{i}}(x,t) = { \vert {\nabla{u_{\varepsilon}}} \vert ^{p(x,t) - 2}} {D_{i}}u,\quad i = 1,2,\dots,N. $$

Proof

In (8), choosing \(\xi = ({u_{\varepsilon}} - u)\Phi\) with \(\Phi \in W({Q_{T}})\), \(\Phi \ge0\), we have

$$\begin{aligned}[b] & \int{ \int_{{Q_{T}}} {\bigl[{u_{\varepsilon t}}({u_{\varepsilon}} - u) \Phi + \Phi\bigl(u_{\varepsilon}^{\sigma}+ {d_{0}}\bigr){{ \vert {\nabla {u_{\varepsilon}}} \vert }^{p(x,t) - 2}} \nabla{u_{\varepsilon}}\nabla({u_{\varepsilon}} - u)\bigr]\,\mathrm{d}x \,\mathrm{d}t} } \\ &\quad{} + \int{ \int_{{Q_{T}}} {\bigl[({u_{\varepsilon}} - u) \bigl(u_{\varepsilon}^{\sigma}+ {d_{0}}\bigr){{ \vert { \nabla{u_{\varepsilon}}} \vert }^{p(x,t) - 2}}\nabla{u_{\varepsilon}} \nabla\Phi - f(x,t) ({u_{\varepsilon}} - u)\Phi\bigr]\,\mathrm{d}x\,\mathrm{d}t} } \\ &\quad{}+ \int{ \int_{{Q_{T}}} {\bigl({{\bigl(u_{\varepsilon}^{\sigma}- { \varepsilon^{2}}\bigr)}^{\frac{\sigma}{2}}} - u_{\varepsilon}^{\sigma}\bigr){{ \vert {\nabla{u_{\varepsilon}}} \vert }^{p(x,t) - 2}}\nabla {u_{\varepsilon}}\nabla\xi\,\mathrm{d}x\,\mathrm{d}t} } = 0. \end{aligned} $$

It follows that

$$ \lim_{\varepsilon \to0} \int{ \int_{{Q_{T}}} {\Phi\bigl(u_{\varepsilon}^{\sigma}+ {d_{0}}\bigr){{ \vert {\nabla{u_{\varepsilon}}} \vert }^{p(x,t) - 2}}\nabla{u_{\varepsilon}}\nabla({u_{\varepsilon}} - u) \,\mathrm{d}x\,\mathrm{d}t = 0.} } $$
(43)

On the other hand, from \({u_{\varepsilon}},u \in{L^{\infty}}({Q_{T}})\) and \(| {\nabla u} | \in {L^{p(x,t)}}({Q_{T}})\) we get

$$\begin{aligned}& \lim_{\varepsilon \to0} \int{ \int_{{Q_{T}}} {\Phi\bigl(u^{\sigma}+ {d_{0}}\bigr){{ \vert {\nabla u} \vert }^{p(x,t) - 2}}\nabla u \nabla({u_{\varepsilon}} - u)\,\mathrm{d}x\,\mathrm{d}t = 0} }, \end{aligned}$$
(44)
$$\begin{aligned}& \lim_{\varepsilon \to0} \int{ \int_{{Q_{T}}} {\Phi\bigl(u_{\varepsilon}^{\sigma}+ {u^{\sigma}}\bigr){{ \vert {\nabla{u_{\varepsilon}}} \vert }^{p(x,t) - 2}}\nabla{u_{\varepsilon}}\nabla({u_{\varepsilon}} - u) \,\mathrm{d}x\,\mathrm{d}t = 0.} } \end{aligned}$$
(45)

Note that

$$ \begin{aligned}[b] 0 &\le\bigl({ \vert {\nabla{u_{\varepsilon}}} \vert ^{p(x,t) - 2}}\nabla{u_{\varepsilon}} - { \vert {\nabla u} \vert ^{p(x,t) - 2}}\nabla u\bigr)\nabla({u_{\varepsilon}} - u) \\ &\le\frac{1}{{{d_{0}}}}\bigl[\bigl(u_{\varepsilon}^{\sigma}+ {d_{0}}\bigr){ \vert {\nabla{u_{\varepsilon}}} \vert ^{p(x,t) - 2}}\nabla {u_{\varepsilon}} - \bigl(u_{\varepsilon}^{\sigma}- u^{\sigma}\bigr){ \vert {\nabla{u_{\varepsilon}}} \vert ^{p(x,t) - 2}}\nabla u\bigr]\nabla ({u_{\varepsilon}} - u) \\ &\quad{} - \frac{1}{{{d_{0}}}}\bigl(u_{\varepsilon}^{\sigma}+ {d_{0}}\bigr){ \vert {\nabla{u_{\varepsilon}}} \vert ^{p(x,t) - 2}}\nabla u\nabla({u_{\varepsilon}} - u). \end{aligned} $$
(46)

By (44)–(46) we have

$$ \lim_{\varepsilon \to0} \int{ \int_{{Q_{T}}} {\Phi\bigl({{ \vert {\nabla{u_{\varepsilon}}} \vert }^{p(x,t) - 2}}\nabla {u_{\varepsilon}} - } } { \vert { \nabla{u_{\varepsilon}}} \vert ^{p(x,t) - 2}}\nabla u\bigr) \nabla({u_{\varepsilon}} - u)\,\mathrm {d}x\,\mathrm{d}t = 0. $$
(47)

 □

Lemma 3.10

As \(\varepsilon \to0\),we have

$$ {\beta_{\varepsilon}}({u_{\varepsilon}} - {u_{0}}) \to\xi \in G(u - {u_{0}}). $$
(48)

Proof

Using (7) and the definition of \({\beta_{\varepsilon}}\), we have

$${\beta_{\varepsilon}}({u_{\varepsilon}} - {u_{0}}) \to\xi\quad \text{as } \varepsilon \to0. $$

Now we prove that \(\xi \in G(u - {u_{0}})\). According to the definition of \(G( \cdot)\), we only need to prove that if \(u({x_{0}},{t_{0}}) > {u_{0}}({x_{0}})\), then \(\xi({x_{0}},{t_{0}}) = 0\). In fact, if \(u({x_{0}},{t_{0}}) > {u_{0}}(x)\), there exist a constant \(\lambda > 0\) and a δ neighborhood \({B_{\delta}}({x_{0}},{t_{0}})\) such that if ε is small enough, we have

$${u_{\varepsilon}}(x,t) \ge{u_{0}}(x) + \lambda, \quad \forall(x,t) \in {B_{\delta}}({x_{0}},{t_{0}}). $$

Thus, if ε is small enough, then we have

$$0 \ge{\beta_{\varepsilon}}({u_{\varepsilon}} - {u_{0}}) \ge{\beta _{\varepsilon}}(\lambda) = 0, \quad \forall(x,t) \in{B_{\delta}}({x_{0}},{t_{0}}). $$

Furthermore, it follows by \(\varepsilon \to0\) that

$$\xi(x,t) = 0, \quad \forall(x,t) \in{B_{\delta}}({x_{0}},{t_{0}}). $$

Hence, (48) holds, and the proof of Lemma 3.10 is completed. □

Applying (28), (29), and Lemma 3.10, it is clear that

$$u(x,t) \le{u_{0}}(x) \quad\text{in } {\Omega_{T}}, \qquad u(x,0) = {u_{0}}(x) \quad\text{in } \Omega, \xi \in G(u - {u_{0}}), $$

and thus (a), (b), and (c) hold. The remaining arguments of the existence part are the same as those of Theorem 2.1 in [8], and we omit the details. Moreover, the uniqueness of solutions can be proved by repeating Lemma 3.1.