1 Introduction

For \(a,b>0\) with \(a\neq b\), the Neuman-Sándor mean \(M(a,b)\) [1], the first Seiffert mean \(P(a,b)\) [2], and the second Seiffert mean \(T(a,b)\) [3] are defined by

$$\begin{aligned}& M(a,b)=\frac{a-b}{2\sinh^{-1}(\frac{a-b}{a+b})}, \end{aligned}$$
(1.1)
$$\begin{aligned}& P(a,b)=\frac{a-b}{4\tan^{-1}(\sqrt{a/b})-\pi}, \\& T(a,b)=\frac{a-b}{2\tan^{-1}(\frac{a-b}{a+b})}, \end{aligned}$$
(1.2)

respectively. It can be observed that the first Seiffert mean \(P(a,b)\) can be rewritten as (see [1])

$$ P(a,b)= \frac{a-b}{2\sin^{-1}(\frac{a-b}{a+b})}, $$
(1.3)

where \(\sinh^{-1}(x)=\log(x+\sqrt{x^{2}+1})\), \(\tan^{-1}(x)=\arctan (x)\), and \(\sin^{-1}(x)=\arcsin(x)\) are the inverse hyperbolic sine, inverse tangent, inverse sine functions, respectively.

Recently, the means M, P, and T and other means have been the subject of intensive research. Many remarkable inequalities for means can be found in the literature [410].

Let \(H(a,b)=2ab/(a+b)\), \(G(a,b)=\sqrt{ab}\), \(L(a, b)=(b-a)/(\log b-\log a)\), \(I(a,b)=1/e(b^{b}/ a^{a})^{1/(b-a)}\), \(A(a,b)=(a+b)/2\), \(Q(a,b)=\sqrt{(a^{2}+b^{2})/2}\) and

$$ M_{p}(a,b)=\left \{ \textstyle\begin{array}{l@{\quad}l} (\frac{a^{p}+b^{p}}{2})^{1/p}, & p\neq0, \\ \sqrt{ab}, & p=0, \end{array}\displaystyle \right . $$

denote the harmonic, geometric, logarithmic, identric, arithmetic, root-square, and the pth power means of two positive numbers a and b with \(a\neq b\), respectively. Then it is well known that the inequalities

$$H(a,b)< G(a,b)< L(a,b)< P(a,b)< I(a,b)< A(a,b)< M(a,b)< T(a,b)< Q(a,b) $$

hold for \(a,b>0\) with \(a\neq b\).

Neuman and Sándor [1] established

$$\frac{\pi}{2}P(a,b)>\sinh^{-1}(1)M(a,b)>\frac{\pi}{4}T(a,b) $$

for all \(a,b>0\) with \(a\neq b\).

Gao [11] proved that the optimal double inequalities

$$\frac{e}{\pi}I(a,b)< P(a,b)< I(a,b), \qquad I(a,b)< T(a,b)< \frac{2e}{\pi}I(a,b) $$

hold for all \(a,b>0\) with \(a\neq b\).

The following bounds for the Seiffert means \(P(a,b)\) and \(T(a,b)\) in terms of the power mean were presented by Jagers in [12]:

$$M_{\frac{1}{2}}< P(a,b)< M_{\frac{2}{3}}(a,b) $$

for all \(a,b>0\) with \(a\neq b\). Hästö [13] improved the results of [12] and found the sharp lower power mean bound for the Seiffert mean \(P(a,b)\) as follows:

$$P(a,b)>M_{\frac{\log2}{\log\pi}}(a,b) $$

for all \(a,b>0\) with \(a\neq b\).

In [14], the authors proved that the sharp double inequality

$$M_{\frac{\log2}{\log\pi-\log2}}< T(a,b)< M_{\frac{5}{3}}(a,b) $$

holds for all \(a,b>0\) with \(a\neq b\).

Let \(\overline{L}_{p}(a,b)=(a^{p+1}+b^{p+1})/(a^{p}+b^{p})\) be the Lehmer mean of two positive numbers a and b with \(a\neq b\). In [15], the authors presented the following best possible Lehmer mean bounds for the Seiffert means \(P(a,b)\) and \(T(a,b)\):

$$ \overline{L}_{-1/6}(a,b)< P(a,b)< \overline {L}_{0}(a,b) \quad \mbox{and}\quad \overline{L}_{0}(a,b)< T(a,b)< \overline{L}_{1/3}(a,b) $$

for all \(a,b>0\) with \(a\neq b\).

Let u, v, and w be bivariate means such that \(u(a,b)< v(a,b)< w(a,b)\) for all \(a,b>0\) with \(a\neq b\). The problems of finding the best possible parameters α and β such that the inequalities \(\alpha u(a,b)+(1-\alpha)v(a,b)< w(a,b)<\beta u(a,b)+(1-\beta)v(a,b)\) and \(u(a,b)^{\alpha}v^{1-\alpha}(a,b)< w(a,b)< u(a,b)^{\beta}v^{1-\beta }(a,b)\) hold for all \(a,b>0\) with \(a\neq b\) have attracted the interest of many mathematicians.

In [16] and [17], the authors proved that the double inequalities

$$\begin{aligned}& \alpha_{1}Q(a,b)+(1-\alpha_{1})A(a,b)< T(a,b)< \beta _{1}Q(a,b)+(1-\beta_{1})A(a,b), \\& Q^{\alpha_{2}}(a,b)A^{1-\alpha_{2}}(a,b)< T(a,b)< Q^{\beta _{2}}(a,b)A^{1-\beta_{2}}(a,b) \end{aligned}$$

hold for all \(a,b>0\) with \(a\neq b\) if and only if \(\alpha_{1}\leq (4-\pi)/[(\sqrt{2}-1)\pi]\), \(\beta_{1}\geq2/3\), \(\alpha_{2}\leq2/3\), \(\beta_{2}\geq4-2\log\pi/\log2\).

In [1], Neuman and Sándor gave the inequality

$$Q(a,b)^{\frac{1}{3}}A(a,b)^{\frac{2}{3}}< M(a,b)< {\frac {1}{3}}Q(a,b)+{ \frac{2}{3}}A(a,b). $$

In [8], Sándor proved the inequality

$$G(a,b)^{\frac{1}{3}}A(a,b)^{\frac{2}{3}}< P(a,b)< {\frac {1}{3}}G(a,b)+{ \frac{2}{3}}A(a,b). $$

In [18] and [19], the authors proved that the double inequalities

$$\begin{aligned}& Q(a,b)^{\alpha_{3}}A^{1-\alpha_{3}}(a,b)< M(a,b)< Q(a,b)^{\beta _{3}}A^{1-\beta_{3}}(a,b), \\& \alpha_{4}Q(a,b)+(1-\alpha_{4})G(a,b)< M(a,b)< \beta _{4}Q(a,b)+(1-\beta_{4})G(a,b) \end{aligned}$$

hold for all \(a,b>0\) with \(a\neq b\) if and only if \(\alpha_{3}\leq 1/3\), \(\beta_{3}\geq2(\log(2+\sqrt{2})-\log3)/\log2\), \(\alpha _{4}\leq2/3\), \(\beta_{4}\geq1/[\sqrt{2}\log(1+\sqrt{2})]\).

In [20], the authors proved that the double inequality

$$\alpha_{5}A(a,b)+(1-\alpha_{5})G(a,b)< P(a,b)< \beta _{5}A(a,b)+(1-\beta_{5})G(a,b) $$

holds for all \(a,b>0\) with \(a\neq b\) if and only if \(\alpha_{5}\leq \pi/2\), \(\beta_{5}\geq2/3\).

The main purpose of this paper is to find the least value α and the greatest value β such that the double inequality

$$P^{\alpha}(a,b)T^{1-\alpha}(a,b)< M(a,b)< P^{\beta}(a,b)T^{1-\beta}(a,b) $$

holds for all \(a,b>0\) with \(a\neq b\).

Theorem 3.1 and Theorem 3.3 in [21] provide the inequality

$$A(a,b)T(a,b)\leq M^{2}(a,b), P(a,b)M(a,b)\leq A^{2}(a,b), $$

following which one can get \(P^{\frac{1}{3}}(a,b)T^{\frac{2}{3}}\leq M(a,b)\). Then the lower bound of α in Theorem 3.1 of Section 3 is achieved.

2 Lemmas

To establish our main result, we need several lemmas, which we present in this section.

For \(x\in(0,1)\), the power series expansions of the functions \(\tan ^{-1}(x)\) and \(\sinh^{-1} (x)\) are presented as follows:

$$\begin{aligned}& \sinh^{-1} (x) =x-\frac{x^{3}}{6}+\frac{3x^{5}}{40}- \frac {15x^{7}}{336}+\cdots=\sum^{\infty}_{n=0} \frac {(-1)^{n}(2n)!}{(2n+1)2^{2n}(n!)^{2}}x^{2n+1}, \end{aligned}$$
(2.1)
$$\begin{aligned}& \tan^{-1}(x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}- \frac{x^{7}}{7}+\cdots =\sum^{\infty}_{n=0} \frac{(-1)^{n}}{2n+1}x^{2n+1}. \end{aligned}$$
(2.2)

Lemma 2.1

If \(x\in(0,1)\), then one has

$$\begin{aligned}& 1+\frac{6x^{2}}{15}< \sqrt{1+x^{2}}< 1+\frac{x^{2}}{2}, \end{aligned}$$
(2.3)
$$\begin{aligned}& \sin^{-1}(x)\sqrt{1-x^{2}}< x-\frac{x^{3}}{3}- \frac{2x^{5}}{15}, \end{aligned}$$
(2.4)
$$\begin{aligned}& \sinh^{-1}(x)>x-\frac{x^{3}}{6}, \end{aligned}$$
(2.5)
$$\begin{aligned}& x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}< \tan^{-1}(x)< x- \frac {x^{3}}{3}+\frac{x^{5}}{5} , \end{aligned}$$
(2.6)

and

$$ \tan^{-1}(x)>x-\frac{x^{3}}{3}+\frac{x^{5}}{9}. $$
(2.7)

Proof

Square every terms of inequality (2.3) at the same time, then it is easy to prove it. Inequality (2.4) was proved in Lemma 2.3 of [22]. Inequalities (2.5) and (2.6) follow immediately from equations (2.1) and (2.2), respectively.

Let \(\Phi(x)=\tan^{-1}(x)-(x-\frac{x^{3}}{3}+\frac{x^{5}}{9})\). Then \(\Phi'(x)=\frac{x^{4}(4-5x^{2})}{9(1+x^{2})}\). Thus, \(\Phi(x)\) is strictly increasing on \((0,\frac{2\sqrt{5}}{5}]\) and strictly decreasing on \([\frac{2\sqrt{5}}{5},1)\). Considering \(\Phi(0)=0\) and \(\Phi(1)=0.0076\ldots>0\), we can get \(\Phi(x)>0\) for \(x \in(0,1)\). Therefore, inequality (2.7) holds. □

Lemma 2.2

If \(x\in(0,0.7)\), then one has

$$\begin{aligned}& \sin^{-1}(x)\sqrt{1-x^{2}}>x-\frac{x^{3}}{3}- \frac{x^{5}}{5}, \end{aligned}$$
(2.8)
$$\begin{aligned}& \tan^{-1}(x)>x-\frac{x^{3}}{3}+\frac{x^{5}}{7}, \end{aligned}$$
(2.9)

and

$$ \sinh^{-1}(x)< x-\frac{2x^{3}}{15}. $$
(2.10)

Proof

Let

$$\begin{aligned}& \gamma_{1}(x)=\sin^{-1}(x)\sqrt{1-x^{2}}- \biggl(x-\frac{x^{3}}{3}-\frac{x^{5}}{5}\biggr), \end{aligned}$$
(2.11)
$$\begin{aligned}& \gamma_{2}(x)=\tan^{-1}(x)-\biggl(x-\frac{x^{3}}{3}+ \frac{x^{5}}{7}\biggr), \end{aligned}$$
(2.12)
$$\begin{aligned}& \gamma_{3}(x)=\biggl(x-\frac{2x^{3}}{15}\biggr)- \sinh^{-1}(x). \end{aligned}$$
(2.13)

Then

$$\begin{aligned}& \gamma_{1}'(x)=\frac{x\gamma_{1}^{*}(x)}{\sqrt{1-x^{2}}}, \end{aligned}$$
(2.14)
$$\begin{aligned}& \gamma_{2}'(x)=\frac{x^{4}(2-5x^{2})}{7+7x^{2}}, \end{aligned}$$
(2.15)
$$\begin{aligned}& \gamma_{3}'(x)=\frac{\gamma_{3}^{*}(x)}{5\sqrt{1+x^{2}}}, \end{aligned}$$
(2.16)

where

$$\begin{aligned}& \gamma_{1}^{*}(x)=\bigl(x+x^{3}\bigr) \sqrt{1-x^{2}}-\sin^{-1}(x), \end{aligned}$$
(2.17)
$$\begin{aligned}& \gamma_{3}^{*}(x)=\sqrt{1+x^{2}} \bigl(5-2x^{2}\bigr)-5. \end{aligned}$$
(2.18)

Differentiating \(\gamma_{1}^{*}(x)\) and \(\gamma_{3}^{*}(x)\), we have

$$\begin{aligned}& \gamma_{1}^{*\prime}(x)=\frac{x^{2}(1-4x^{2})}{\sqrt{1-x^{2}}}, \end{aligned}$$
(2.19)
$$\begin{aligned}& \gamma_{3}^{*\prime}(x)=\frac{x}{\sqrt{1+x^{2}}}\bigl(1-6x^{2} \bigr). \end{aligned}$$
(2.20)

Furthermore, direct or numerical computations lead to

$$\begin{aligned}& \gamma_{1}(0)=0, \qquad \gamma_{1}(0.7)=0.0017 \ldots>0, \end{aligned}$$
(2.21)
$$\begin{aligned}& \gamma_{1}^{*}(0)=0,\qquad \gamma_{1}^{*}(1)=-1.5708 \ldots< 0, \end{aligned}$$
(2.22)
$$\begin{aligned}& \gamma_{2}(0)=0, \qquad \gamma_{2}(0.7)=0.0010 \ldots>0, \end{aligned}$$
(2.23)
$$\begin{aligned}& \gamma_{3}(0)=0,\qquad \gamma_{3}(0.7)=0.0016 \ldots>0, \end{aligned}$$
(2.24)

and

$$ \gamma_{3}^{*}(0)=0, \qquad \gamma_{3}^{*}(1)=-0.7574\ldots< 0. $$
(2.25)

From (2.19), we can easy to see that \(\gamma_{1}^{*}(x)\) is strictly increasing on \((0,\frac{1}{2}]\) and strictly decreasing on \([\frac {1}{2},1)\). This fact and (2.22) together with (2.14) imply that there exists \(x_{0} \in(\frac{1}{2},1)\), such that \(\gamma _{1}'(x)>0\) on \((0,x_{0})\) and \(\gamma_{1}'(x)<0\) on \((x_{0},1)\). The monotonicity of \(\gamma_{1}(x)\) and (2.21) lead to

$$ \gamma_{1}(x)>0 $$

for x \(\in(0,0.7)\). Therefore, inequality (2.8) holds.

Equation (2.15) shows that \(\gamma_{2}(x)>0\) on \((0,\frac{\sqrt {10}}{5})\) and \(\gamma_{2}(x)<0\) on \((\frac{\sqrt{10}}{5},1)\). This fact and (2.23) lead to

$$ \gamma_{2}(x)>0 $$

for x \(\in(0,0.7)\). That is to say inequality (2.9) holds.

By (2.20), we know that \(\gamma_{3}^{*}(x)\) is strictly increasing on \((0,\frac{\sqrt{6}}{6}]\) and strictly decreasing on \([\frac{\sqrt {6}}{6},1)\). This fact and (2.25) together with (2.16) imply that there must exist \(x_{1} \in(\frac{\sqrt{6}}{6},1)\), such that \(\gamma_{3}'(x)>0\) on \((0,x_{1})\) and \(\gamma_{3}'(x)<0\) on \((x_{1},1)\). It follows from the monotonicity of \(\gamma_{3}(x)\) and (2.24) that

$$ \gamma_{3}(x)>0 $$

for x \(\in(0,0.7)\). This means the inequality (2.10) holds. □

Lemma 2.3

If x \(\in(0.7,1)\), the double inequality

$$ x-\frac{x^{3}}{3}+\frac{2x^{5}}{17}< \tan^{-1}(x)< x- \frac{x^{3}}{3}+\frac {2x^{5}}{13} $$
(2.26)

holds.

Proof

Let

$$\begin{aligned}& \xi_{1}(x)=\biggl(x-\frac{x^{3}}{3}+\frac{2x^{5}}{13}\biggr)- \tan^{-1}(x), \\& \xi_{2}(x)=\biggl(x-\frac{x^{3}}{3}+\frac{2x^{5}}{17}\biggr)- \tan^{-1}(x). \end{aligned}$$

Then

$$\begin{aligned}& \xi_{1}'(x)=\frac{x^{4}(10x^{2}-3)}{13(1+x^{2})}, \end{aligned}$$
(2.27)
$$\begin{aligned}& \xi_{2}'(x)=\frac{x^{4}(10x^{2}-7)}{17(1+x^{2})}. \end{aligned}$$
(2.28)

Equality (2.27) implies that \(\xi_{1}(x)\) is strictly increasing on \([\frac{\sqrt{30}}{10},1)\). Additional numerical computations lead to \(\frac{\sqrt{30}}{10}<0.7\) and \(\xi_{1}(0.7)=0.0007976\ldots>0\). Therefore, we can get \(\xi_{1}(x)>0\) for x \(\in(0.7,1)\). This implies the right hand side of the double inequality (2.26) holds.

Equality (2.28) implies \(\xi_{2}(x)\) is strictly decreasing on \((0,\frac{\sqrt{70}}{10}]\) and strictly increasing on \([\frac{\sqrt {70}}{10},1)\). Because of \(\xi_{2}(0)=0\) and \(\xi _{2}(1)=-0.0011\ldots<0\), it leads to \(\xi_{2}(x)<0\) for \(x \in(0,1)\). Specially, for \(x\in(0.7,1)\). This means the left hand side of the double inequality (2.26) holds. □

Lemma 2.4

Let

$$\begin{aligned}& \mu_{1}(x)=\frac{1+3x^{2}}{(x+x^{3})^{2}}-\frac {1}{(1+x^{2})[\sinh^{-1}(x)]^{2}}- \frac{x}{(1+x^{2})^{\frac{3}{2}}\sinh^{-1}(x)}, \end{aligned}$$
(2.29)
$$\begin{aligned}& \mu_{2}(x)=-\frac{1+3x^{2}}{(x+x^{3})^{2}}+\frac {1}{(1-x^{2})[\sin^{-1}(x)]^{2}}- \frac{x}{(1-x^{2})^{\frac{3}{2}}\sin^{-1}(x)}, \end{aligned}$$
(2.30)

and

$$ \mu_{3}(x)=-\frac{2x}{(1+x^{2})^{2}\tan^{-1}(x)}-\frac{1}{[\tan ^{-1}(x)]^{2}(1+x^{2})^{2}}+ \frac{1+3x^{2}}{(x+x^{3})^{2}}. $$
(2.31)

Then, for any \(x\in(0.7,1)\), we have

$$ \mu_{1}(x)< 0.17, \qquad \mu_{2}(x)< -1.48, $$
(2.32)

and

$$ \mu_{3}(x)>-0.05. $$
(2.33)

Proof

From Lemmas 2.6 and 2.7 of [22], for any \(x\in [0.7,1)\), we can get \(\mu_{1}'(x)\leq0.167\ldots<0.17 \) and \(\mu _{2}'(x)\leq-1.48798\ldots<-1.48\), respectively.

Differentiating \(\mu_{3}(x)\), we have

$$ \mu_{3}'(x)=\frac{2\eta_{1}(x)+6x^{2}\tan^{-1}(x)\eta _{2}(x)}{[\tan^{-1}(x)(x+x^{3})]^{3}}, $$
(2.34)

where

$$ \eta_{1}(x)=x^{3}-x^{3}\bigl[ \tan^{-1}(x)\bigr]^{2}-\bigl[\tan^{-1}(x) \bigr]^{3} $$

and

$$ \eta_{2}(x)=x^{2}+x^{3}\tan^{-1}(x)- \bigl(2x^{2}+1\bigr)\bigl[\tan^{-1}(x)\bigr]^{2}. $$

For any \(x \in[0.7,1)\),

$$\begin{aligned} \eta_{1}(x) < &x^{3}-x^{3}\biggl(x- \frac{x^{3}}{3}+\frac{x^{5}}{9}\biggr)^{2}-\biggl(x- \frac{x^{3}}{3}+\frac {x^{5}}{9}\biggr)^{3} \\ =&-x^{9}\bigl(54+x^{6}\bigr)< 0 \end{aligned}$$
(2.35)

and

$$\begin{aligned} \eta_{2}(x) < &x^{2}+x^{3}\biggl(x- \frac{x^{3}}{3}+\frac{2x^{5}}{13}\biggr)-\bigl(2x^{2}+1\bigr) \biggl(x-\frac {x^{3}}{3}+\frac{2x^{5}}{17}\biggr)^{2} \\ =&\frac{x^{4}}{1\text{,}989}\bigl(-663+1\text{,}300x^{2}-637x^{4} \bigr)+\frac {x^{8}}{33\text{,}813}\bigl(-4\text{,}743+4\text{,}836x^{2}-936x^{4} \bigr) \end{aligned}$$

follow from inequalities (2.7) and (2.26), respectively. Because \(-663+1\text{,}300x^{2}-637x^{4}<0\) and \(-4\text{,}743+4\text{,}836x^{2}-936x^{4}<0\) for x \(\in (0.7,1)\), we have

$$ \eta_{2}(x)< 0 $$
(2.36)

for \(x\in(0.7,1)\). Thus \(\mu_{3}'(x)<0\) for \(x\in(0.7,1)\) follows from (2.34), (2.35), and (2.36). Therefore, we obtain \(\mu_{3}(x)>\mu_{3}(1)=-0.0419\ldots>-0.05\) for \(x\in(0.7,1)\). □

Lemma 2.5

Let \(f(x)=\frac{1}{\sqrt{1+x^{2}}\sinh^{-1}(x)}-(1-\lambda_{0})\frac {1}{(1+x^{2})\tan^{-1}(x)}-\lambda_{0}\frac{1}{\sqrt {1-x^{2}}\sin^{-1}(x)}\), where \(\lambda_{0}=\frac{\log(\frac{4\log (1+\sqrt{2})}{\pi})}{\log2}=0.1663\ldots\) . Then the function \(f(x)\) is strictly decreasing on \((0.7,1)\).

Proof

It is obvious that

$$\begin{aligned} f(x) =&\biggl[\frac{1}{\sqrt{1+x^{2}}\sinh^{-1}(x)}-\frac{1}{x(1+x^{2})}\biggr] + \lambda_{0}\biggl[\frac{1}{x(1+x^{2})}-\frac{1}{\sqrt{1-x^{2}}\sin^{-1}(x)}\biggr] \\ &{}+(\lambda_{0}-1)\biggl[\frac{1}{(1+x^{2})\tan^{-1}(x)}-\frac{1}{x(1+x^{2})} \biggr] \\ :=&U_{1}(x)+\lambda_{0}U_{2}(x)+( \lambda_{0}-1)U_{3}(x). \end{aligned}$$

Differentiating \(f(x)\), we have

$$\begin{aligned} f'(x) =&U'_{1}(x)+\lambda_{0}U'_{2}(x)+( \lambda_{0}-1)U'_{3}(x) \\ =&\mu_{1}(x)+\lambda_{0}\mu_{2}(x)+( \lambda_{0}-1)\mu_{3}(x), \end{aligned}$$
(2.37)

where \(\mu_{1}(x)\), \(\mu_{2}(x)\), and \(\mu_{3}(x)\) are defined as in Lemma 2.4. Therefore, Lemma 2.4 and equation (2.37) yield

$$\begin{aligned} f'(x) < &0.17+\lambda_{0}(-1.48)+(\lambda_{0}-1) (-0.05) \\ =&-0.0345\ldots< 0 \end{aligned}$$

for \(x\in(0.7,1)\). The proof is completed. □

3 Main results

Theorem 3.1

The double inequality

$$ P^{\alpha}(a,b)T^{1-\alpha}(a,b)< M(a,b)< P^{\beta}(a,b)T^{1-\beta}(a,b) $$

holds for all \(a,b > 0\) with \(a\neq b\) if and only if \(a\geq1/3\) and \(\beta\leq\frac{\log(\frac{4\log(1+\sqrt{2})}{\pi})}{\log 2}=0.1663\ldots\) .

Proof

Because \(P(a,b)\), \(M(a,b)\), and \(T(a,b)\) are symmetric and homogeneous of degree 1, without loss of generality, we assume that \(a>b\). Let \(p\in(0,1)\), \(\lambda_{0}=\frac{\log(\frac{4\log (1+\sqrt{2})}{\pi})}{\log2}\), and \(x=(a-b)/(a+b)\). Then \(x\in(0,1)\) and

$$\begin{aligned}& p\log\bigl[P(a,b)\bigr]+(1-p)\log\bigl[T(a,b)\bigr]-\log \bigl[M(a,b)\bigr] \\& \quad =p\log\biggl[\frac{x}{\sin^{-1}(x)}\biggr]+(1-p)\log\biggl[\frac {x}{\tan^{-1}(x)} \biggr]-\log\biggl[\frac{x}{\sinh^{-1}(x)}\biggr] \\& \quad =\log\bigl[\sinh^{-1}(x)\bigr]-(1-p)\log\bigl[ \tan^{-1}(x)\bigr]-p\log\bigl[\sin^{-1}(x) \bigr]:=D_{p}(x). \end{aligned}$$
(3.1)

It follows that

$$ D_{p}\bigl(0^{+}\bigr)=0 \quad \mbox{and} \quad D_{\lambda_{0}}\bigl(1^{-}\bigr)=0. $$
(3.2)

Differentiating \(D_{p}(x)\), we have

$$\begin{aligned} D_{p}'(x) =&\frac{1}{\sinh^{-1}(x)\sqrt{1+x^{2}}}-(1-p) \frac {1}{\tan^{-1}(x)(1+x^{2})}-p\frac{1}{\sin^{-1}(x)\sqrt{1-x^{2}}} \\ =&\frac{g_{p}(x)}{\sinh^{-1}(x)(1+x^{2})\tan^{-1}(x)\sin^{-1}(x)\sqrt {1-x^{2}}}, \end{aligned}$$
(3.3)

where

$$\begin{aligned} g_{p}(x) =&\bigl[\sqrt{1+x^{2}} \tan^{-1}(x)-(1-p)\sinh^{-1}(x)\bigr]\sin ^{-1}(x) \sqrt{1-x^{2}} \\ &{}-p\sinh^{-1}(x) \bigl(1+x^{2}\bigr)\tan^{-1}(x). \end{aligned}$$
(3.4)

On one hand, when \(p=\frac{1}{3}\), Lemma 2.1 and equation (3.4) lead to

$$\begin{aligned} g_{\frac{1}{3}}(x) =&\biggl[\sqrt{1+x^{2}} \tan^{-1}(x)-\frac{2}{3}\sinh ^{-1}(x)\biggr] \sin^{-1}(x)\sqrt{1-x^{2}} \\ &{}-\frac{1}{3}\sinh^{-1}(x) \bigl(1+x^{2}\bigr) \tan^{-1}(x) \\ < &\biggl[\biggl(1+\frac{x^{2}}{2}\biggr) \biggl(x-\frac{x^{3}}{3}+ \frac{x^{5}}{5}\biggr)-\frac {2}{3}\biggl(x-\frac{x^{3}}{6}\biggr) \biggr] \biggl(x-\frac{x^{3}}{3}-\frac{2x^{5}}{15}\biggr) \\ &{}-\frac{1}{3}\biggl(x-\frac{x^{3}}{6}\biggr) \bigl(1+x^{2} \bigr) \biggl(x-\frac{x^{3}}{3}+\frac {x^{5}}{5}-\frac{x^{7}}{7}\biggr) \\ =&\frac{x^{6}}{3\text{,}150}\bigl(-70+80x^{2}+41x^{4}-67x^{6} \bigr)< 0 \end{aligned}$$
(3.5)

for \(x\in(0,1)\). According to (3.3) and (3.5), we can see that

$$ D_{\frac{1}{3}}'(x)< 0 $$
(3.6)

for \(x\in(0,1)\).

On the other hand, when \(p=\lambda_{0}\), the inequalities (2.3) and (2.6) and Lemma 2.2 together with equation (3.4) lead to

$$\begin{aligned} g_{\lambda_{0}}(x) =&\bigl[\sqrt{1+x^{2}} \tan^{-1}(x)-(1-\lambda_{0})\sinh ^{-1}(x)\bigr] \sin^{-1}(x)\sqrt{1-x^{2}} \\ &{}-\lambda_{0}\sinh^{-1}(x) \bigl(1+x^{2}\bigr) \tan^{-1}(x) \\ >&\biggl[\biggl(1+\frac{6x^{2}}{15}\biggr) \biggl(x-\frac{x^{3}}{3}+ \frac{x^{5}}{7}\biggr)-(1-\lambda _{0}) \biggl(x-\frac{2x^{3}}{15} \biggr)\biggr]\biggl(x-\frac{x^{3}}{3}-\frac{x^{5}}{5}\biggr) \\ &{}-\lambda_{0}\biggl(x-\frac{2x^{3}}{15}\biggr) \bigl(1+x^{2}\bigr) \biggl(x-\frac{x^{3}}{3}+\frac {x^{5}}{5} \biggr) \\ =&\frac{x^{4}}{1\text{,}575}F_{\lambda_{0}}(x) \end{aligned}$$
(3.7)

for \(x\in(0,0.7)\), where

$$F_{\lambda_{0}}(x)=(315-1\text{,}575\lambda_{0})+(105\lambda _{0}-90)x^{2}+(22-301\lambda_{0})x^{4}+(42 \lambda_{0}-33)x^{6}-18x^{8}. $$

Because of \(42\lambda_{0}-33=-26.0142\ldots<0\) and \(105\lambda _{0}-90=-72.5354\ldots<0\), it follows that

$$\begin{aligned} F_{\lambda_{0}}(x) >&(315-1\text{,}575\lambda_{0})+(105 \lambda _{0}-90)x^{2}+(22-301\lambda_{0})x^{4}+(42 \lambda _{0}-33)x^{4}-18x^{4} \\ =&(315-1\text{,}575\lambda_{0})+(105\lambda_{0}-90)x^{2}+(-29-259 \lambda _{0})x^{4} \\ :=&F^{*}(x) \end{aligned}$$
(3.8)

and

$$F^{*\prime}(x)=2(105\lambda_{0}-90)x+4(-29-259 \lambda_{0})x^{3}< 0 $$

for \(x\in(0,0.7)\). Thus, we can get

$$ F_{\lambda_{0}}(x)>F^{*}(x)>F^{*}(0.7)=0.1825 \ldots>0 $$
(3.9)

for \(x\in(0,0.7)\). Therefore, equation (3.3) and inequalities (3.7)-(3.9) imply

$$ D_{\lambda_{0}}'(x)>0 $$
(3.10)

for \(x\in(0,0.7)\).

It follows from equation (3.3) and Lemma 2.5 that \(D_{\lambda _{0}}'(x)\) is strictly decreasing on \((0.7,1)\). Then from equation (3.10) and \(D_{\lambda_{0}}'(1^{-})=-\infty\), we know that there exists \(x_{*} \in(0.7,1)\) such that \(D_{\lambda_{0}}(x)\) is strictly increasing on \((0,x_{*}]\) and strictly decreasing on \([x_{*},1)\). This in conjunction with (3.2) means that

$$ D_{\lambda_{0}}(x)>0 $$
(3.11)

for x \(\in(0,1)\).

Therefore, for all \(a,b>0\) with \(a\neq b\),

$$ M(a,b)>P^{\frac{1}{3}}(a,b)T^{\frac{2}{3}}(a,b), $$
(3.12)

follows from equations (3.1), (3.2), and (3.6) as well as

$$ M(a,b)< P^{\lambda_{0}}(a,b)T^{1-\lambda_{0}}(a,b) $$
(3.13)

follows from equations (3.1), (3.2), and (3.11).

Finally, by easy computations, equations (1.1), (1.2), and (1.3) lead to

$$\begin{aligned}& \frac{\log[T(a,b)]-\log[M(a,b)]}{\log[T(a,b)]-\log[P(a,b)]}=\frac {\log[\sinh^{-1}(x)]-\log[\tan^{-1}(x)]}{\log[\sin^{-1}(x)]-\log [\tan^{-1}(x)]}, \end{aligned}$$
(3.14)
$$\begin{aligned}& \lim_{x\rightarrow0^{+}}\frac{\log[\sinh^{-1}(x)]-\log [\tan^{-1}(x)]}{\log[\sin^{-1}(x)]-\log[\tan^{-1}(x)]}=\frac{1}{3} \end{aligned}$$
(3.15)

and

$$ \lim_{x\rightarrow1^{-}}\frac{\log[\sinh^{-1}(x)]-\log [\tan^{-1}(x)]}{\log[\sin^{-1}(x)]-\log[\tan^{-1}(x)]}= \lambda_{0}. $$
(3.16)

Thus, we have the following two claims.

Claim 1

If \(\alpha<\frac{1}{3}\), then from (3.14) and (3.15), there must exist \(\delta_{1}\in(0,1)\) such that \(M(a,b)< P^{\alpha}(a,b)T^{1-\alpha}(a,b)\) for all \(a,b >0\) with \((a-b)/(a+b)\in(0,\delta_{1})\).

Claim 2

If \(\beta>\lambda_{0}\), then from (3.14) and (3.16), there must exist \(\delta_{2} \in(0,1)\) such that \(M(a,b)>P^{\beta}(a,b)T^{1-\beta}(a,b)\) for all \(a,b >0\) with \((a-b)/(a+b)\in(1-\delta_{2},1)\).

Inequalities (3.12) and (3.13) in conjunction with the above two claims mean the proof is completed.  □