Skip to main content
Log in

Formation of surface nanodroplets of viscous liquids by solvent exchange

  • Tips and Tricks
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract.

Surface nanodroplets are essential units for many compartmentalised processes from catalysis, liquid-liquid reactions, crystallization, wetting and more. Current techniques for producing submicron droplets are mainly based on top-down approaches, which are increasingly limited as scale reduces. Herein, solvent exchange is demonstrated as a simple solution-based approach for the formation of surface nanodroplets with intermediate and extremely high viscosity (1 000 000 cSt). By solvent exchange, the viscous droplet liquid dissolves in a good solvent that is then displaced by a poor solvent to yield surface droplets for the oversaturaion pulse at the mixing front. Within controlled flow conditions, the geometry of droplets of low and intermediate viscosity liquids can be tailored on the nano and microscale by controlling the flow rate. Meanwhile for extremely viscous liquids, the droplet size is shown to be dependent on the liquid temperature. This work demonstrates that solvent exchange offers a versatile tool for the formation of droplets with a wide range of viscosity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jonathan Shemesh, Tom Ben Arye, Jonathan Avesar, Joo H. Kang, Amir Fine, Michael Super, Amit Meller, Donald E. Ingber, Shulamit Levenberg, Proc. Natl. Acad. Sci. U.S.A. 111, 11293 (2014)

    Article  ADS  Google Scholar 

  2. Hengquan Yang, Luman Fu, Lijuan Wei, Jifen Liang, Bernard P. Binks, J. Am. Chem. Soc. 137, 1362 (2015)

    Article  Google Scholar 

  3. Christopher A. Strulson, Rosalynn C. Molden, Christine D. Keating, Philip C. Bevilacqua, Nat. Chem. 4, 941 (2012)

    Article  Google Scholar 

  4. Jack W. Szostak, David P. Bartel, P. Luigi Luisi, Nature 409, 387 (2001)

    Article  ADS  Google Scholar 

  5. D. Lohse, X. Zhang, Rev. Mod. Phys. 87, 981 (2015)

    Article  ADS  Google Scholar 

  6. Ying Zhu, Yun-Xia Zhang, Wen-Wen Liu, Yan Ma, Qun Fang, Bo Yao, Sci. Rep. 5, 9551 (2015)

    Article  Google Scholar 

  7. Antonio Mendez-Vilas, Ana Belen Jodar-Reyes, Maria Luisa Gonzalez-Martin, Small 5, 1366 (2009)

    Article  Google Scholar 

  8. Haolan Xu, Xuehua Zhang, Adv. Colloid Interf. Sci. 224, 17 (2015)

    Article  Google Scholar 

  9. Huizeng Li, Qiang Yang, Guannan Li, Mingzhu Li, Shutao Wang, Yanlin Song, ACS Appl. Mater. Interfaces 7, 9060 (2015)

    Article  Google Scholar 

  10. Paul Delrot, Miguel A. Modestino, Franois Gallaire, Demetri Psaltis, Christophe Moser, Phys. Rev. Appl. 6, 024003 (2016)

    Article  ADS  Google Scholar 

  11. In Ho Choi, Joonwon Kim, Micro Nano Syst. Lett. 4, 1 (2016)

    Article  ADS  Google Scholar 

  12. Daeshik Kang, Changhyun Pang, Sang Moon Kim, Hye Sung Cho, Hyung Sik Um, Yong Whan Choi, Kahp Y. Suh, Adv. Mater. 24, 1709 (2012)

    Article  Google Scholar 

  13. Dinesh Chandra, Shu Yang, Acc. Chem. Res. 43, 1080 (2010)

    Article  Google Scholar 

  14. Alberto Piqu, Appl. Phys. A 105, 517 (2011)

    Article  Google Scholar 

  15. D. Beysens, C.M. Knobler, Phys. Rev. Lett. 57, 1433 (1986)

    Article  ADS  Google Scholar 

  16. Aijuan Zhang, Hua Bai, Lei Li, Chem. Rev. 115, 9801 (2015)

    Article  Google Scholar 

  17. Xuehua Zhang, Ziyang Lu, Huanshu Tan, Lei Bao, Yinghe He, Chao Sun, Detlef Lohse, Proc. Natl. Acad. Sci. U.S.A. 112, 9253 (2015)

    Article  ADS  Google Scholar 

  18. Ziyang Lu, Shuhua Peng, Xuehua Zhang, Langmuir 32, 1700 (2016)

    Article  Google Scholar 

  19. Lei Bao, Amgad R. Rezk, Leslie Y. Yeo, Xuehua Zhang, Small 11, 4850 (2015)

    Article  Google Scholar 

  20. Lei Bao, Zenon Werbiuk, Detlef Lohse, Xuehua Zhang, J. Phys. Chem. Lett. 7, 1055 (2016)

    Article  Google Scholar 

  21. Haitao Yu, Ziyang Lu, Detlef Lohse, Xuehua Zhang, Langmuir 31, 12628 (2015)

    Article  Google Scholar 

  22. M. Lessel, O. Bumchen, M. Klos, H. Hhl, R. Fetzer, M. Paulus, R. Seemanna, K. Jacobsa, Surf. Interfaces 47, 557 (2014)

    Article  Google Scholar 

  23. Robert Sherman, Drew Hirt, Ronald Vane, J. Vac. Sci. Technol. 12, 1876 (1994)

    Article  ADS  Google Scholar 

  24. Xuehua Zhang, Jingming Ren, Haijun Yang, Yuanhua He, Jingfung Tan, Greg G. Qiao, Soft Matter 8, 4314 (2012)

    Article  ADS  Google Scholar 

  25. Shuhua Peng, Detlef Lohse, Xuehua Zhang, ACS Nano 9, 11916 (2015)

    Article  Google Scholar 

  26. Chenglong Xu, Haitao Yu, Shuhua Peng, Ziyang Lu, Lei Lei, Detlef Lohse, Xuehua Zhang, Soft Matter 13, 937 (2017)

    Article  Google Scholar 

  27. W.D. Ristenpart, P.M. McCalla, R.V. Roy, H.A. Stone, Phys. Rev. Lett. 97, 064501 (2006)

    Article  ADS  Google Scholar 

  28. W.M. Haynes (Editor), CRC Handbook of Chemistry and Physics (CRC Press, 95 edition, 2014)

  29. J.P. Munch, J. Herz, S. Boileau, S. Candau, Macromolecules 14, 1370 (1981)

    Article  ADS  Google Scholar 

  30. C.J.C. Edwards, R.F.T. Stepto, J.A. Semlyen, Polymer 23, 865 (1982)

    Article  Google Scholar 

  31. K.C. Pratt, W.A. Wakeham, Proc. R. Soc. A 336, 393 (1974)

    Article  ADS  Google Scholar 

  32. Gelest, Silicone fluids property profile guide. Technical report, Gelest Inc. (2012)

  33. Xuehua Zhang, Henri Lhuissier, Chao Sun, Detlef Lohse, Phys. Rev. Lett. 112, 1 (2014)

    Article  Google Scholar 

  34. Chon U. Chan, Longquan Chen, Manish Arora, Claus-Dieter Ohl, Phys. Rev. Lett. 114, 114505 (2015)

    Article  ADS  Google Scholar 

  35. Haitao Yu, Shuhua Peng, Lei Lei, Ji Wei Zhang, Tamar L. Greaves, Xuehua Zhang, ACS Appl. Mater. Interfaces 8, 22679 (2016)

    Article  Google Scholar 

  36. Xingya Wang, Binyu Zhao, Jun Hu, Shuo Wang, Renzhong Tai, Xingyu Gao, Lijuan Zhang, Phys. Chem. Chem. Phys. 19, 1108 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuehua Zhang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyett, B., Yu, H. & Zhang, X. Formation of surface nanodroplets of viscous liquids by solvent exchange. Eur. Phys. J. E 40, 26 (2017). https://doi.org/10.1140/epje/i2017-11514-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2017-11514-8

Keywords

Navigation