Skip to main content
Log in

Relaxation of non-equilibrium entanglement networks in thin polymer films

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

It is known that polymer films, prepared by spin coating, inherit non-equilibrium configurations which can affect macroscopic film properties. Here we present the results of crazing experiments that support this claim; our measurements indicate that the as-cast chain configurations are strongly stretched as compared to equilibrium Gaussian configurations. The results of our experiments also demonstrate that the entanglement network equilibrates on a time scale comparable to one reptation time. Having established that films can be prepared with an equilibrium entanglement network, we proceed by confining polymers to films in which the thickness is comparable to the molecular size. By stacking two such films, a bilayer is created with a buried entropic interface. Such an interface has no enthalpic cost, only an entropic penalty associated with the restricted configurations of molecules that cannot cross the mid-plane of the bilayer. In the melt, the entropic interface heals as chains from the two layers mix and entangle with one another; crazing measurements allow us to probe the dynamics of two films becoming one. Healing of the entropic interface is found to take less than one bulk reptation time.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, 1979)

  2. M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, 2003)

  3. G.C. Berry, T.G. Fox, Adv. Polym. Sci. 5, 261 (1968)

    Article  Google Scholar 

  4. J.D. Ferry, Viscoelastic Properties of Polymers, 3rd edition (John Wiley & Sons, Inc., 1980)

  5. T.C.B. McLeish, Adv. Phys. 51, 1379 (2002)

    Article  ADS  Google Scholar 

  6. A.E. Likhtman, T.C.B. McLeish, Macromolecules 35, 6332 (2002)

    Article  ADS  Google Scholar 

  7. H.H. Kausch, M. Tirrell, Annu. Rev. Mater. Sci. 19, 341 (1989)

    Article  ADS  Google Scholar 

  8. C. Creton, E.J. Kramer, H.R. Brown, C.-Y. Hui, Adv. Polym. Sci. 156, 53 (2001)

    Article  Google Scholar 

  9. E.J. Kramer, Adv. Polym. Sci. 52/53, 1 (1983)

  10. E.J. Kramer, L.L. Berger, Adv. Polym. Sci. 91/92, 1 (1990)

    Google Scholar 

  11. H.R. Brown, Macromolecules 24, 2752 (1991)

    Article  ADS  Google Scholar 

  12. H.R. Brown, T.P. Russell, Macromolecules 29, 798 (1996)

    Article  ADS  Google Scholar 

  13. L. Si, M.V. Massa, K. Dalnoki-Veress, H.R. Brown, R.A.L. Jones, Phys. Rev. Lett. 94, 127801 (2005)

    Article  ADS  Google Scholar 

  14. F. Brochard-Wyart, P.G. de Gennes, H. Hervet, C. Redon, Langmuir 10, 1566 (1994)

    Article  Google Scholar 

  15. O. Bäumchen, R. Fetzer, K. Jacobs, Phys. Rev. Lett. 103, 247801 (2009)

    Article  ADS  Google Scholar 

  16. D.R. Barbero, U. Steiner, Phys. Rev. Lett. 102, 248303, (2009)

    Article  ADS  Google Scholar 

  17. K.R. Thomas, A. Chenneviere, G. Reiter, U. Steiner, Phys. Rev. E 83, 021804 (2011)

    Article  ADS  Google Scholar 

  18. R.N. Li, A. Clough, Z. Yang, O.K.C. Tsui, Macromolecules 45, 1085 (2012)

    Article  ADS  Google Scholar 

  19. A. Clough, M. Chowdhury, K. Jahanshahi, G. Reiter, O.K.C. Tsui, Macromolecules 45, 6196 (2012)

    Article  ADS  Google Scholar 

  20. S.G. Croll, J. Appl. Polym. Sci. 23, 847 (1979)

    Article  Google Scholar 

  21. G. Reiter, M. Hamieh, P. Damman, S. Sclavons, S. Gabriele, T. Vilmin, E. Raphaël, Nat. Mater. 4, 754 (2005)

    Article  ADS  Google Scholar 

  22. P. Damman, S. Gabriele, S. Coppée, S. Desprez, D. Villers, T. Vilmin, E. Raphaël, M. Hamieh, S. Al Akhrass, G. Reiter, Phys. Rev. Lett. 99, 036101 (2007)

    Article  ADS  Google Scholar 

  23. A. Raegen, M. Chowdhury, C. Calers, A. Schmatulla, U. Steiner, G. Reiter, Phys. Rev. Lett. 105, 227801 (2010)

    Article  ADS  Google Scholar 

  24. K.R. Thomas, U. Steiner, Soft Matter 15, 7839 (2011)

    Article  ADS  Google Scholar 

  25. F. Closa, F. Zeibert, E. Raphaël, Phys. Rev. E 83, 051603 (2011)

    Article  ADS  Google Scholar 

  26. M. Chowdhury, P. Freyberg, F. Zeibert, A.C.-M. Yang, U. Steiner, G. Reiter, Phys. Rev. Lett. 109, 136102 (2012)

    Article  ADS  Google Scholar 

  27. A. Silberberg, J. Colloid Interface Sci. 90, 86 (1982)

    Article  Google Scholar 

  28. H. Bodiguel, C. Fretigny, Phys. Rev. Lett. 97, 266105 (2006)

    Article  ADS  Google Scholar 

  29. L.J. Fetters, D.J. Lohse, D. Richter, T.A. Witten, A. Zirkel, Macromolecules 27, 4639 (1994)

    Article  ADS  Google Scholar 

  30. L.J. Fetters, D.J. Lohse, W.W. Graessley, J. Polym. Sci. Polym. Phys. 37, 1023 (1999)

    Article  ADS  Google Scholar 

  31. J. Klein, Nature 12, 144 (1978)

    Google Scholar 

  32. P.F. Green, E.J. Kramer, Macromolecules 19, 1108 (1986)

    Article  ADS  Google Scholar 

  33. Y. Liu, G. Reiter, K. Kunz, M. Stamm, Macromolecules 26, 2134 (1993)

    Article  ADS  Google Scholar 

  34. A. Karim, G.P. Felcher, T.P. Russell, Macromolecules 27, 6973 (1994)

    Article  ADS  Google Scholar 

  35. P.G. de Gennes, J. Chem. Phys. 35, 572 (1971)

    Article  ADS  Google Scholar 

  36. K. Jud, H.H. Kausch, J.G. Williams, J. Mater. Sci. 16, 204 (1981)

    Article  ADS  Google Scholar 

  37. S. Prager, M. Tirrell, J. Chem. Phys. 75, 5194 (1981)

    Article  ADS  Google Scholar 

  38. F. Brochard-Wyart. Fundamentals of Adhesion, Chapter 6 (Plenum Press, New York, 1991)

  39. F. Pierce, D. Perahia, G.S. Grest, EPL 95, 46001 (2011)

    Article  ADS  Google Scholar 

  40. J. Rottler, M.O. Robbins, Phys. Rev. E. 68, 011801 (2003)

    Article  ADS  Google Scholar 

  41. J. Rottler, J. Phys.: Condens. Matter 21, 463101 (2009)

    Article  ADS  Google Scholar 

  42. H.R. Brown, J. Mater. Sci. 14, 237 (1979)

    Article  ADS  Google Scholar 

  43. B.D. Lauterwasser, E.J. Kramer, Philos. Mag. A 39, 469 (1979)

    Article  ADS  Google Scholar 

  44. J.D. McGraw, K. Dalnoki-Veress, Phys. Rev. E 82, 021802 (2010)

    Article  ADS  Google Scholar 

  45. A.M. Donald, E.J. Kramer, J. Polym. Sci. Part B: Polym. Phys. 20, 899 (1982)

    Article  ADS  Google Scholar 

  46. A.M. Donald, E.J. Kramer, Polymer 23, 461 (1982)

    Article  Google Scholar 

  47. A.C.-M. Yang, E.J. Kramer, C.C. Kuo, S.L. Phoenix, Macromolecules 19, 2020 (1986)

    Article  ADS  Google Scholar 

  48. A.G. Emslie, F.T. Bonner, L.G. Peck, J. Appl. Phys. 20, 858 (1958)

    Article  MathSciNet  ADS  Google Scholar 

  49. A. Bach, K. Almdal, H.K. Rasmussen, O. Hassager, Macromolecules 36, 5174 (2003)

    Article  ADS  Google Scholar 

  50. S. Napolitano, M. Wübbenhorst, Nat. Commun. 2, 260 (2011)

    Article  ADS  Google Scholar 

  51. J.P. Cotton, D. Decker, H. Benoit, B. Farnoux, J. Higgins, G. Jannink, R. Ober, C. Picot, J. des Cloizeaux, Macromolecules 7, 863 (1974)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGraw, J.D., Fowler, P.D., Ferrari, M.L. et al. Relaxation of non-equilibrium entanglement networks in thin polymer films. Eur. Phys. J. E 36, 7 (2013). https://doi.org/10.1140/epje/i2013-13007-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13007-2

Keywords

Navigation