Skip to main content

Topological Entanglement and Its Relation to Polymer Material Properties

  • Conference paper
  • First Online:
Knots, Low-Dimensional Topology and Applications (KNOTS16 2016)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 284))

Included in the following conference series:

  • 1074 Accesses

Abstract

In this manuscript we review recent results that show how measures of topological entanglement can be used to provide information relevant to dynamics and mechanics of polymers. We use Molecular Dynamics simulations of coarse-grained models of polymer melts and solutions of linear chains in different settings. We apply the writhe to give estimates of the entanglement length and to study the disentanglement of polymer melts in an elongational flow. Our results also show that our topological measures correlate with viscoelastic properties of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Z1 is available online at http://www.complexfluids.ethz.ch/Z1

  2. P.K. Agarwal, H. Edelsbrunner, Y. Wang, Computing the writhing number of a polygonal knot. Discrete Comput. Geom., 32:37–53 (2004)

    Google Scholar 

  3. S. Anogiannakis, C. Tzoumanekas, D.N. Theodorou, Microscopic description of entanglements in polyethylene networks and melts. Macromolecules 45, 9475–9492 (2012)

    Article  Google Scholar 

  4. J. Arsuaga, Y. Diao, M. Vazquez. Mathematical methods in DNA topology: applications to chromosome organization and site-specific recombination. in Mathematics of DNA Structure, Functions and Interactions, eds. by C.J. Benham, S. Harvey, W.K. Olson, D. W. Sumners, D. Swigon (New York: Springer Science + Business Media, 2009), vol. 40, pp. 7–36

    Google Scholar 

  5. G.A. Arteca, Self-similarity complexity along the backbones of compact proteins. Phys. Rev. E. 56, 4516–4520 (1997)

    Article  Google Scholar 

  6. G.A. Arteca, O. Tapia, Relative measure of geometrical entanglement to study folding-unfolding transitions. Int. J. Quant. Chem. 80, 848–855 (2000)

    Article  Google Scholar 

  7. M.A. Berger, C. Prior, The writhe of open and closed curves. J. Phys. A. 39, 8321–8348 (2006)

    Article  MathSciNet  Google Scholar 

  8. P.G. de Gennes, Scaling concepts in Polymer Physics (Cornell University Press, 1979)

    Google Scholar 

  9. Y. Diao, A. Dobay, A. Stasiak, The average inter-crossing number of equilateral random walks and polygons. J. Phys. A Math. Gen. 38, 7601–7616 (2005)

    Article  MathSciNet  Google Scholar 

  10. Y. Diao, R.N. Kushner, K.C. Millett, A. Stasiak, The average crossing number of equilateral random polygons. J. Phys. A Math. Gen. 36, 11561–11574 (2003)

    Article  MathSciNet  Google Scholar 

  11. M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986)

    Google Scholar 

  12. F. Edwards, Statistical mechanics with topological constraints. I Proc. Phys. Soc. 91, 513–9 (1967)

    Article  Google Scholar 

  13. F. Edwards, Statistical mechanics with topological constraints: Ii. J Phys A Gen Phys 1, 15–28 (1968)

    Article  Google Scholar 

  14. G.H. Fredrickson, The Equilibrium Theory of Inhomogeneous Polymers (Oxford University Press, 2013)

    Google Scholar 

  15. P. Freyd, D. Yetter, J. Hoste, W. Lickorish, K.C. Millett, A. Ocneanu, A new polynomial invariant for knots and links. Bull. Am. Math. Soc. 12, 239–46 (1985)

    Article  MathSciNet  Google Scholar 

  16. C.W. Gardiner. Handbook of Stochastic Methods (Series in Synergetics. Springer, 1985)

    Google Scholar 

  17. K.F. Gauss, Werke (Kgl. Gesellsch. Wiss, Göttingen, 1877)

    Book  Google Scholar 

  18. D. Goundaroulis, N. Gügümcü, S. Lambropoulou, J. Dorier, A. Stasiak, L.H. Kauffman, Topological models for open knotted protein chains using the concepts of knotoids and bonded knottoids. Polymers 9, 444 (2017)

    Article  Google Scholar 

  19. N. Gügümcü, S. Lambropoulou, Knotoids, braidoids and applications. Symmetry 9, 315 (2017)

    Article  Google Scholar 

  20. R.S. Hoy, K. Foteinopoulou, M. Kröger, Topological analysis of polymeric melts: Chain-length effects and fast-converging estimators for entanglement length. Phys. Rev. E 80, 031803 (2009)

    Article  Google Scholar 

  21. N.C. Karayiannis, M. Kröger, Combined molecular algorithms for the generation, equilibration and topological analysis of entangled polymers: Methodology and performance. Int. J. Mol. Sci. 10, 5054–5089 (2009)

    Article  Google Scholar 

  22. L.H. Kauffman. Knots and Physics, volume 1 of Series on knots and everything (World Scientific, 1991)

    Google Scholar 

  23. J.M. Kim, D.J. Keffer, B.J. Edwards, M. Kröger, Rheological and entanglement characterisitcs of linear-chain polyethylene liquids in planar cuette and planar elongational flow. J. Non-Newotonian Fluid Mech. 152, 168–183 (2008)

    Article  Google Scholar 

  24. D. Kivotides, S.L. Wilkin, T.G. Theofanous, Entangled chain dynamics of polymer knots in extensional flow. Phys. Rev. E. 80, 041808 (2009)

    Article  Google Scholar 

  25. K. Klenin, J. Langowski, Computation of writhe in modelling of supercoiled dna. Biopolymers 54, 307–317 (2000)

    Article  Google Scholar 

  26. M. Kröger, Efficient hybrid algorithm for the dynamic creation of semiflexible polymer solutions, brushes, melts and glasses. Comput. Phys. Commun. 118, 278–298 (1999)

    Article  Google Scholar 

  27. M. Kröger, Simple models for complex nonequilibrium fluids. Phys. Rep. 390, 453–551 (2004)

    Article  MathSciNet  Google Scholar 

  28. M. Kröger, Shortest multiple disconnected path for the analysis of entanglements in two- and three-dimensional polymeric systems. Comput. Phys. Commun. 168, 209–232 (2005)

    Article  Google Scholar 

  29. F. Lahmar, C. Tzoumanekas, D.N. Theodorou, B. Rousseau, Topological analysis of linear polymer melts: a statistical approach. Macromolecules 42, 7485 (2009)

    Article  Google Scholar 

  30. C. Laing, D.W. Sumners, Computing the writhe on lattices. J. Phys. A 39, 3535–3543 (2006)

    Article  MathSciNet  Google Scholar 

  31. C. Laing, D.W. Sumners, The writhe of oriented polygonal graphs. J. Knot Theor. Ramif. 17, 1575–1594 (2008)

    Article  MathSciNet  Google Scholar 

  32. M. Laso, N.C. Karayiannis, K. Foteinopoulou, L. Mansfield, M. Kröger, Random packing of model polymers: local structure, topological hindrance and universal scaling. Soft Matter 5, 1762–1770 (2009)

    Article  Google Scholar 

  33. A.W. Lees, S. Edwards, The computer study of transport processes under extreme conditions. J. Phys. C: Solid State Phys. 5, 1921 (1972)

    Article  Google Scholar 

  34. K.C. Millett, A. Dobay, A. Stasiak, Linear random knots and their scaling behavior. Macromolecules 38, 601–606 (2005)

    Article  Google Scholar 

  35. E. Panagiotou, The linking number in systems with periodic boundary conditions. J. Comput. Phys. 300, 533–573 (2015)

    Article  MathSciNet  Google Scholar 

  36. E. Panagiotou, M. Kröger, Pulling-force-induced elongation and alignment effects on entanglement and knotting characteristics of linear polymers in a melt. Phys. Rev. E 90, 042602 (2014)

    Article  Google Scholar 

  37. E. Panagiotou, M. Kröger, K. Millett, Writhe versus mutual entanglement of linear polymer chains in a melt. Phys. Rev. E. 88, 062604 (2013)

    Article  Google Scholar 

  38. E. Panagiotou, M. Kröger, K.C. Millett, Writhe and mutual entanglement combine to give the entanglement length. Phys. Rev. E 88, 062604 (2013)

    Article  Google Scholar 

  39. E. Panagiotou, K.C. Millett, P.J. Atzberger, Topological methods for polymeric materials: characterizing the relationship between polymer entanglement and viscoelasticity. Polymers 11(3), 43 (2019)

    Google Scholar 

  40. E. Panagiotou, C. Tzoumanekas, S. Lambropoulou, K.C. Millett, D.N. Theodorou, A study of the entanglement in systems with periodic boundary conditions. Progr. Theor. Phys. Suppl. 191, 172–181 (2011)

    Article  Google Scholar 

  41. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  Google Scholar 

  42. J. Portillo, Y. Diao, R. Scharein, J. Arsuaga, M. Vazquez, On the mean and variance of the writhe of random polygons. J. Phys. A Math. Theor. 44, 275004 (2011)

    Article  MathSciNet  Google Scholar 

  43. J. Przytycki, P. Traczyk, Conway algebras andskein equivalence of links. Proc. Amer. Math. Soc. 100, 744–48 (1987)

    Article  MathSciNet  Google Scholar 

  44. M. Pütz, K. Kremer, What is the entanglement length in a polymer melt? Europhys. Lett. 49, 735–741 (2000)

    Article  Google Scholar 

  45. E.J. Rawdon, J.C. Kern, M. Piatek, P. Plunkett, A. Stasiak, K.C. Millett, Effect of knotting on the shape of polymers. Macromolecules 41, 8281–8287 (2008)

    Article  Google Scholar 

  46. M. Rubinstein, R. Colby, Polymer Physics (Oxford University Press, 2003)

    Google Scholar 

  47. S. Shanbhag, M. Kröger, Primitive path networks generated by annealing and geometrical methods: Insights into differences. Macromolecules 40, 2897 (2007)

    Article  Google Scholar 

  48. S.K. Sukumaran, G.S. Grest, K. Kremer, R. Everaers, Identifying the primitive path mesh in entangled polymer liquids. R. J. Polym. Sci. B Polym. Phys. 43:917–933 (2005)

    Google Scholar 

  49. J.I. Sulkowska, E.J. Rawdon, K.C. Millett, J.N. Onuchic, A. Stasiak, Conservation of complex knotting and slpiknotting in patterns in proterins. PNAS 109, E1715 (2012)

    Article  Google Scholar 

  50. C. Tzoumanekas, F. Lahmar, B. Rousseau, D.N. Theodorou, Topological analysis of linear polymer melts: a statistical approach. Macromolecules 42, 7474 (2009)

    Article  Google Scholar 

  51. C. Tzoumanekas, D.N. Theodorou, Topological analysis of linear polymer melts: a statistical approach. Macromolecules 39, 4592–4604 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni Panagiotou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Panagiotou, E. (2019). Topological Entanglement and Its Relation to Polymer Material Properties. In: Adams, C., et al. Knots, Low-Dimensional Topology and Applications. KNOTS16 2016. Springer Proceedings in Mathematics & Statistics, vol 284. Springer, Cham. https://doi.org/10.1007/978-3-030-16031-9_21

Download citation

Publish with us

Policies and ethics