Skip to main content
Log in

Influence of separating distance between atomic sensors for gravitational wave detection

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We consider a recent scheme of gravitational wave detection using atomic interferometers as inertial sensors, and reinvestigate its configuration using the concept of sensitivity functions. We show that such configuration can suppress noise without influencing the gravitational wave signal. But the suppression is insufficient for the direct observation of gravitational wave signals, so we analyse the behaviour of the different noises influencing the detection scheme. As a novel method, we study the relations between the measurement sensitivity and the distance between two interferometers, and find that the results derived from vibration noise and laser frequency noise are in stark contrast to that derived from the shot noise, which is significant for the configuration design of gravitational wave detectors using atomic interferometers.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.R. Gair, M. Vallisneri, S.L. Larson, J.G. Baker, Living Rev. Relat. 16, 7 (2013)

    ADS  Google Scholar 

  2. B. Abbott et al., Rep. Prog. Phys. 72, 076901 (2009)

    Article  ADS  Google Scholar 

  3. T. Accadia et al., J. Instrum. 7, P03012 (2012)

    Google Scholar 

  4. S. Dimopoulos, P.W. Graham, J.M. Hogan, M.A. Kasevich, S. Rajendran, Phys. Rev. D 78, 122002 (2008)

    Article  ADS  Google Scholar 

  5. S. Dimopoulos, P.W. Graham, J.M. Hogan, M.A. Kasevich, S. Rajendran, Phys. Lett. B 678, 37 (2009)

    Article  ADS  Google Scholar 

  6. P.L. Bender, Phys. Rev. D 84, 028101 (2011)

    Article  ADS  Google Scholar 

  7. S. Dimopoulos, P.W. Graham, J.M. Hogan, M.A. Kasevich, S. Rajendran, Phys. Rev. D 84, 028102 (2011)

    Article  ADS  Google Scholar 

  8. J.M. Hogan et al., Gen. Relativ. Gravit. 43, 1953 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  9. P.L. Bender, Gen. Relativ. Gravit. 44, 711 (2012)

    Article  ADS  MATH  Google Scholar 

  10. N. Yu, M. Tinto, Gen. Relativ. Gravit. 43, 1943 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. P.W. Graham, J.M. Hogan, M.A. Kasevich, S. Rajendran, Phys. Rev. Lett. 110, 171102 (2013)

    Article  ADS  Google Scholar 

  12. P.L. Bender, Phys. Rev. D 89, 062004 (2014)

    Article  ADS  Google Scholar 

  13. R.X. Adhikari, Rev. Mod. Phys. 86, 121 (2014)

    Article  ADS  Google Scholar 

  14. Lin Zhou et al., Phys. Rev. Lett. 115, 013004 (2015)

    Article  ADS  Google Scholar 

  15. M.J. Snadden, J.M. McGuirk, P. Bouyer, K.G. Haritos, M.A. Kasevich, Phys. Rev. Lett. 81, 971 (1998)

    Article  ADS  Google Scholar 

  16. J.G. Baker, J.I. Thorpe, Phys. Rev. Lett. 108, 211101 (2012)

    Article  ADS  Google Scholar 

  17. G.J. Dick, Local Osillator induced instabilities, in Proc. Nineteenth Annual Precise Time and Time interval (1987), 133

  18. G. Santarelli, C. Audoin, A. Makdissi, P. Laurent, G.J. Dick, A. Clairon, IEEE Trans. Ultr. Ferr. Freq. Contr. 45, 887 (1998)

    Article  Google Scholar 

  19. P. Cheinet, B. Canuel, F.P.D. Santos, A. Gauguet, F. Leduc, A. Landragin, IEEE Trans. Instrum. Mess. 57, 1141 (2008)

    Article  Google Scholar 

  20. J.L.E. Gouët et al., Appl. Phys. B 92, 133 (2008)

    Article  ADS  Google Scholar 

  21. B. Barrett, P.-A. Gominet, E. Cantin, L. Antoni-Micollier, A. Bertoldi, B. Battelier, P. Bouyer, in Proceedings of the International School of Physics Enrico Fermi, Atom Interferometry (2014), Vol. 188, 493

  22. B. Tang, B. Zhang, L. Zhou, J. Wang, M.S. Zhan, Res. Astron. Astrophys. 15, 333 (2015)

    Article  ADS  Google Scholar 

  23. M.A. Kasevich, S. Chu, Phys. Rev. Lett. 67, 181 (1991)

    Article  ADS  Google Scholar 

  24. P. Kwee, B. Willke, K. Danzmann, Appl. Phys. B 102, 515 (2011)

    Article  ADS  Google Scholar 

  25. A. Peters, K.Y. Chung, S. Chu, Metrologia 38, 25 (2001)

    Article  ADS  Google Scholar 

  26. J. Harms et al., Phys. Rev. D 88, 122003 (2013)

    Article  ADS  Google Scholar 

  27. F.B. Estabrook, H.D. Wahlquist, Gen. Relativ. Gravit. 5, 439 (1975)

    Article  ADS  Google Scholar 

  28. H. Muller, S.W. Chiow, Q. Long, S. Herrmann, S. Chu, Phys. Rev. Lett. 100, 180405 (2008)

    Article  ADS  Google Scholar 

  29. S.-W. Chiow, T. Kovachy, H.-C. Chien, M.A. Kasevich, Phys. Rev. Lett. 107, 130403 (2011)

    Article  ADS  Google Scholar 

  30. A. Miffre, M. Jacquey, M. Büchner, G. Trénec, J. Vigué, Appl. Phys. B 84, 617 (2006)

    Article  ADS  Google Scholar 

  31. A. Peters, K.Y. Chung, S. Chu, Nature 400, 849 (1999)

    Article  ADS  Google Scholar 

  32. B. Zhang, Q.Y. Cai, M.S. Zhan, Eur. Phys. J. D 67, 184 (2013)

    Article  ADS  Google Scholar 

  33. B.N. Agrawal, H.-J. Chen, Smart Mater. Struct. 13, 873 (2004)

    Article  ADS  Google Scholar 

  34. Y. Zhang, B. Fang, Y. Chen, Meccanica 47, 1185 (2012)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baocheng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, B., Zhang, B., Zhou, L. et al. Influence of separating distance between atomic sensors for gravitational wave detection. Eur. Phys. J. D 69, 233 (2015). https://doi.org/10.1140/epjd/e2015-60069-8

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2015-60069-8

Keywords

Navigation