Skip to main content
Log in

Limitations of atom interferometry for gravitational wave observations in space

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A paper published recently (Hogan et al. in Gen. Relativ. Gravit. 43:1953–2009, 2011) suggests the use of atom interferometry between satellites in Earth orbit to observe gravitational waves. The proposed altitude and satellite separation are about 1,000 and 30 km respectively. The difference in acceleration between clouds of ultracold atoms in atom interferometers near the two satellites would be detected by using laser beams between the interferometers. Because of the measurement path being very short compared with the million km or longer measurement path for a proposed laser interferometer gravitational wave antenna in space, the sensitivity to differential fluctuations in the laser phase as seen by the atoms in the two atom interferometers is very high. Problems introduced by this high sensitivity to spurious laser beam phase changes will be described in the first part of this paper. Then other limitations on the performance and on the suggested types of sources that could be observed will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hogan J.M. et al.: Gen. Relativ. Gravit. 43, 1953–2009 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  2. Dimopoulos S., Graham P.W., Hogan J.M., Kasevich M.A., Rajendran S.: Phys. Rev. D 78, 122002 (2008)

    Article  ADS  Google Scholar 

  3. Bender P.L.: Phys. Rev. D 84, 028101 (2011)

    Article  ADS  Google Scholar 

  4. Dimopoulos S. et al.: Phys. Rev. D 84, 028102 (2011)

    Article  ADS  Google Scholar 

  5. Hopman C.: Class. Quantum Grav. 26, 094028 (2009)

    Article  ADS  Google Scholar 

  6. Will C.M.: ApJ 611, 1080–1083 (2004)

    Article  ADS  Google Scholar 

  7. Bender P.L., Hils D.: Class. Quantum Grav. 14, 1439–1444 (1997)

    Article  ADS  Google Scholar 

  8. Hils D., Bender P.L., Webbink R.F.: ApJ 360, 75–94 (1990)

    Article  ADS  Google Scholar 

  9. Timpano S.E., Rubbo L.J., Cornish N.J.: Phys. Rev. D 73, 122001 (2006)

    Article  ADS  Google Scholar 

  10. Nelemans, G.: Astrophysics of white dwarf binaries. In: S. M. Merkowitz, J. C. Livas (eds.) Laser Interferometer Space Antenna, AIP Conf. Proc. 873, (Am. Inst. Physics, Melville, N.Y., 2006), pp. 397–405

  11. Nelemans G., Yungelson L.R., Portegies Zwart S.F.: Astron. Astrophys. 375, 890–898 (2001)

    Article  ADS  Google Scholar 

  12. Ruiter A.J., Belczynski K., Benacquista M., Holley-Bockelmann K.: Astrophys. J. 693, 383–387 (2009)

    Article  ADS  Google Scholar 

  13. Nelemans G.: Class. Quantum Grav. 26, 094030 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Bender.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bender, P.L. Limitations of atom interferometry for gravitational wave observations in space. Gen Relativ Gravit 44, 711–717 (2012). https://doi.org/10.1007/s10714-011-1306-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-011-1306-3

Keywords

Navigation