Skip to main content
Log in

Multi-component molecular orbital study on positron attachment to alkali-metal hydride molecules: nature of chemical bonding and dissociation limits of [LiH; e+]

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We have performed multi-component full-configuration interaction calculations to investigate the nature of chemical bonding of [LiH;e+] at the small and large internuclear distance. We discuss the importance of geometrical changes in positronic compounds induced by a positron attachment in terms of the virial theorem, with a comparison of the adiabatic- and vertical-positron affinity (PA). The systematic improvement of the PA values achieved by optimisation of (i) the molecular geometry and (ii) the positronic basis centre is also discussed. The stable dissociation channel of [LiH;e+] is compared with the ionic- and neutral-dissociation channels of its parent molecule LiH through the analysis of the potential energy curve and the electronic and positronic densities. The vertical PA as a function of is also presented, which is the difference between the potential energy curve of the parent molecule (LiH → Li + H) and its positronic compound ([LiH; e+] → Li + [H; e+]). Unlike the preceding study of [M. Mella et al., J. Chem. Phys. 113, 6154 (2000)], it took more than bohr to converge the vertical PA due to the long-range ionic bonding interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Charlton, J.W. Humberston, Positron Physics (Cambridge University Press, Cambridge, 2001)

  2. J.R. Danielson, J.J. Gosselin, C.M. Surko, Phys. Rev. Lett. 104, 233201 (2010)

    Article  ADS  Google Scholar 

  3. J.R. Danielson, A.C.L. Jones, M.R. Natisin, C.M. Surko, Phys. Rev. Lett. 109, 113201 (2012)

    Article  ADS  Google Scholar 

  4. O.H. Crawford, Proc. Phys. Soc. 91, 279 (1967)

    Article  ADS  Google Scholar 

  5. O.H. Crawford, Mol. Phys. 20, 585 (1971)

    Article  ADS  Google Scholar 

  6. P.E. Cade, W.M. Huo, J. Chem. Phys. 45, 1063 (1966)

    Article  ADS  Google Scholar 

  7. P.E. Cade, W.M. Huo, J. Chem. Phys. 47, 614 (1967)

    Article  ADS  Google Scholar 

  8. R.J. Buenker, H.P. Liebermann, V. Melnikov, M. Tachikawa, L. Pichl, M. Kimura, J. Phys. Chem. A 109, 5956 (2005)

    Article  Google Scholar 

  9. H.A. Kurtz, K.D. Jordan, J. Phys. B 11, L479 (1978)

    Article  ADS  Google Scholar 

  10. K. Strasburger, J. Chem. Phys. 111, 10555 (1999)

    Article  ADS  Google Scholar 

  11. K. Strasburger, J. Chem. Phys. 114, 615 (2001)

    Article  ADS  Google Scholar 

  12. S. Bubin, L. Adamowicz, J. Chem. Phys. 120, 6051 (2004)

    Article  ADS  Google Scholar 

  13. M. Mella, G. Morosi, D. Bressanini, S. Elli, J. Chem. Phys. 113, 6154 (2000)

    Article  ADS  Google Scholar 

  14. Y. Kita, R. Maezono, M. Tachikawa, M. Towler, R.J. Needs, J. Chem. Phys. 131, 134310 (2009)

    Article  ADS  Google Scholar 

  15. Y. Kita, R. Maezono, M. Tachikawa, M. Towler, R.J. Needs, J. Chem. Phys. 135, 054108 (2011)

    Article  ADS  Google Scholar 

  16. C. Swalina, M.V. Pak, S. Hammes-Schiffer, J. Chem. Phys. 136, 164105 (2012)

    Article  ADS  Google Scholar 

  17. J. Mitroy, G.G. Rhyzhikh, J. Phys. B 33, L479 (2000)

    Google Scholar 

  18. Y. Yamada, Y. Kita, M. Tachikawa, M.D. Towler, R.J. Needs, Eur. Phys. J. D 68, 63 (2014)

    Article  ADS  Google Scholar 

  19. M. Tachikawa, K. Taneda, K. Mori, Int. J. Quant. Chem. 75, 497 (1999)

    Article  Google Scholar 

  20. M. Tachikawa, Chem. Phys. Lett. 350, 269 (2001)

    Article  ADS  Google Scholar 

  21. M. Tachikawa, Y. Kita, R.J. Buenker, Phys. Chem. Chem. Phys. 13, 2701 (2011)

    Article  Google Scholar 

  22. G. Marc, W.G. McMillan, in Advances in Chemical Physics, edited by I. Prigogine, S.A. Rice (Wiley, New York, 1985), Vol. 58, pp. 209–361

  23. M. Tachikawa, Y. Osamura, J. Chem. Phys. 113, 4942 (2000)

    Article  ADS  Google Scholar 

  24. Y. Yamaguchi, Y. Osamura, J.D. Goddard, H.F. Schaefer III, A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory (Oxford University Press, New York, 1994), and references therein

  25. K. Strasburger, Chem. Phys. Lett. 253, 49 (1996)

    Article  ADS  Google Scholar 

  26. B.C. Webster, Chemical Bonding Theory (Blackwell Scientific, Oxford, 1990)

  27. H. Partridge, S.R. Langhoff, J. Chem. Phys. 74, 2361 (1981)

    Article  ADS  Google Scholar 

  28. J. Mitroy, G.G. Rhyzhikh, J. Phys. B 34, 2001 (2001)

    Article  ADS  Google Scholar 

  29. M. Tachikawa, Y. Kita, Butsuri 67, 33 (2012) (in Japanese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Oyamada.

Additional information

Contribution to the Topical Issue “Electron and Positron Induced Processes”, edited by Michael Brunger, Radu Campeanu, Masamitsu Hoshino, Oddur Ingólfsson, Paulo Limão-Vieira, Nigel Mason, Yasuyuki Nagashima and Hajime Tanuma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyamada, T., Tachikawa, M. Multi-component molecular orbital study on positron attachment to alkali-metal hydride molecules: nature of chemical bonding and dissociation limits of [LiH; e+]. Eur. Phys. J. D 68, 231 (2014). https://doi.org/10.1140/epjd/e2014-40708-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2014-40708-4

Keywords

Navigation