Skip to main content
Log in

Static electric dipole polarizabilities for isoelectronic sequences. II. Open-shell S states

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We present static electric dipole polarizabilities α d(Z,N) from numerical nonrelativistic restricted Hartree-Fock (RHF) finite-field calculations for high-spin open-shell S states (L = 0) of atoms and isoelectronic ions with N ≤ 55 electrons. All these S states result from one or more half-filled shells. For eight isoelectronic sequences, those with N = 3, 7, 11, 15, 23, 29, 33 or 41 electrons where the electronic ground state of the neutral or nearly neutral members is conserved upon increase of the nuclear charge number Z, polarizability data are given for ions with charge number Q = ZN up to Q = 90. In addition, these data are represented in terms of rational functions of Q (with absolute value of the relative error of the fit always below 4%). The rational functions are comparable to the classical nonrelativistic result α d(Z,1) = 4.5 / Z 4 = 4.5 / (Q + 1)4 for the polarizability of the 2S ground state of a hydrogen-like system. Our results also contribute to constitute a reference database (i) for algebraic approaches relying on basis functions, and (ii) for the discussion of relativistic and correlation effects on polarizabilities along isoelectronic sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.D. Bonin, V.V. Kresin, Electric-Dipole Polarizabilities of Atoms, Molecules and Clusters (World Scientific, Singapore, 1997)

  2. P. Schwerdtfeger, in Atoms, Molecules and Clusters in Electric Fields, Theoretical Approaches to the Calculation of Electric Polarizability, edited by G. Maroulis (Imperial College Press, London, 2006), p. 1

  3. A.J. Thakkar, C. Lupinetti, in Atoms, Molecules and Clusters in Electric Fields, Theoretical Approaches to the Calculation of Electric Polarizability, edited by G. Maroulis (Imperial College Press, London, 2006), p. 505

  4. J. Mitroy, M.S. Safronova, C.W. Clark, J. Phys. B 43, 202001 (2010)

    Article  ADS  Google Scholar 

  5. L.G. Gray, X. Sun, K.B. MacAdam, Phys. Rev. A 38, 4985 (1988)

    Article  ADS  Google Scholar 

  6. R.A. Komara, M.A. Gearba, C.W. Fehrenbach, S.R. Lundeen, J. Phys. B 38, S87 (2005)

    Article  ADS  Google Scholar 

  7. K.L. Burns, D. Bellert, A.W.-K. Leung, W.H. Breckenridge, J. Chem. Phys. 114, 2996 (2001)

    Article  ADS  Google Scholar 

  8. D. Bellert, W.H. Breckenridge, Chem. Rev. 102, 1595 (2002)

    Article  Google Scholar 

  9. Atomic and Molecular Beams, edited by R. Campargue (Springer, Berlin, 2001)

  10. Ion Beams in Nanoscience and Technology, edited by R. Hellborg, H.J. Whitlow, Y. Zhang (Springer, Berlin, 2009)

  11. Materials Science with Ion Beams, edited by H. Bernas (Springer, Berlin, 2010)

  12. M. Cohen, Proc. R. Soc. London A 293, 359 (1966)

    Article  ADS  Google Scholar 

  13. M. Cohen, G.W.F. Drake, Proc. Phys. Soc. 92, 23 (1967)

    Article  ADS  Google Scholar 

  14. M. Cohen, Adv. At. Mol. Phys. 25, 195 (1988)

    Article  ADS  Google Scholar 

  15. H.D. Cohen, C.C.J. Roothaan, J. Chem. Phys. 43, S34 (1965)

    Article  ADS  Google Scholar 

  16. T. Voegel, J. Hinze, F. Tobin, J. Chem. Phys. 70, 1107 (1979)

    Article  ADS  Google Scholar 

  17. J. Stiehler, J. Hinze, J. Phys. B 28, 4055 (1995)

    Article  ADS  Google Scholar 

  18. J. Stiehler, Ph.D. thesis, Bielefeld University, 1995

  19. V. Koch, D. Andrae, Int. J. Quantum Chem. 111, 891 (2011)

    Article  Google Scholar 

  20. F. Biegler-König, J. Hinze, J. Comput. Phys. 67, 290 (1986)

    Article  ADS  MATH  Google Scholar 

  21. D. Andrae, J. Hinze, Int. J. Quantum Chem. 63, 65 (1997)

    Article  Google Scholar 

  22. P.J. Mohr, B.N. Taylor, Rev. Mod. Phys. 77, 1 (2005)

    Article  ADS  Google Scholar 

  23. J. Kobus, Comput. Lett. 3, 71 (2007)

    Article  Google Scholar 

  24. S. Fraga, J. Karwowski, K.M.S. Saxena, At. Data Nucl. Data Tables 12, 467 (1973)

    Article  ADS  Google Scholar 

  25. S. Fraga, J. Karwowski, K.M.S. Saxena, Handbook of Atomic Data (Elsevier, Amsterdam, 1976), p. 319

  26. S. Fraga, J. Muszyńska, Atoms in External Fields (Elsevier, Amsterdam, 1981), p. 53

  27. J.A. Pople, P. Schofield, Philos. Mag. 2, 591 (1957)

    Article  ADS  MATH  Google Scholar 

  28. A.J. Sadlej, M. Urban, J. Mol. Struct. Theochem 234, 147 (1991)

    Article  Google Scholar 

  29. I. Miadoková, V. Kellö, A.J. Sadlej, Theor. Chem. Acc. 96, 166 (1997)

    Article  Google Scholar 

  30. I.S. Lim, M. Pernpointner, M. Seth, J.K. Laerdahl, P. Schwerdtfeger, P. Neogrády, M. Urban, Phys. Rev. A 60, 2822 (1999)

    Article  ADS  Google Scholar 

  31. B. Kundu, D. Ray, P.K. Mukherjee, Phys. Rev. A 34, 62 (1986)

    Article  ADS  Google Scholar 

  32. G. Maroulis, Chem. Phys. Lett. 334, 207 (2001)

    Article  ADS  Google Scholar 

  33. V. Kellö, A.J. Sadlej, K. Faegri, Phys. Rev. A 47, 1715 (1993)

    Article  ADS  Google Scholar 

  34. I.S. Lim, P. Schwerdtfeger, Phys. Rev. A 70, 062501 (2004)

    Article  ADS  Google Scholar 

  35. A.K. Das, D. Ray, P.K. Mukherjee, Theor. Chim. Acta 82, 223 (1992)

    Article  Google Scholar 

  36. S. Canuto, M.A. Castro, P.K. Mukherjee, Phys. Rev. A 49, 3515 (1994)

    Article  ADS  Google Scholar 

  37. R. Medeiros, M.A. Castro, O.A.V. Amaral, Phys. Rev. A 54, 3661 (1996)

    Article  ADS  Google Scholar 

  38. K. Andersson, A.J. Sadlej, Phys. Rev. A 46, 2356 (1992)

    Article  ADS  Google Scholar 

  39. Z. Benkova, A.J. Sadlej, R.E. Oakes, S.E.J. Bell, J. Comput. Chem. 26, 145 (2005)

    Article  Google Scholar 

  40. A. Baranowska, A.J. Sadlej, J. Comput. Chem. 31, 552 (2010)

    Google Scholar 

  41. A.J. Sadlej, Theor. Chim. Acta 79, 123 (1991)

    Article  Google Scholar 

  42. Z. Benkova, A.J. Sadlej, R.E. Oakes, S.E.J. Bell, Theor. Chem. Acc. 113, 238 (2005)

    Article  Google Scholar 

  43. A.J. Sadlej, Theor. Chim. Acta 81, 339 (1992)

    Article  Google Scholar 

  44. P.W. Fowler, A.J. Sadlej, Phys. Rev. A 43, 6386 (1991)

    Article  ADS  Google Scholar 

  45. A. Baranowska, M. Siedlecka, A.J. Sadlej, Theor. Chem. Acc. 118, 959 (2007)

    Article  Google Scholar 

  46. A.A. Buchachenko, Proc. R. Soc. London A 467, 1310 (2011)

    Article  ADS  Google Scholar 

  47. P. Schwerdtfeger, G.A. Bowmaker, J. Chem. Phys. 100, 4487 (1994)

    Article  ADS  Google Scholar 

  48. P. Neogrády, V. Kellö, M. Urban, A.J. Sadlej, Theor. Chim. Acta 93, 101 (1996)

    Article  Google Scholar 

  49. J. Kłos, J. Chem. Phys. 123, 024308 (2005)

    Article  ADS  Google Scholar 

  50. M. Iliaš, P. Neogrády, Chem. Phys. Lett. 309, 441 (1999)

    Article  ADS  Google Scholar 

  51. G.W.F. Drake, M. Cohen, J. Chem. Phys. 48, 1168 (1968)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Andrae.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, V., Andrae, D. Static electric dipole polarizabilities for isoelectronic sequences. II. Open-shell S states. Eur. Phys. J. D 67, 139 (2013). https://doi.org/10.1140/epjd/e2013-40191-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2013-40191-5

Keywords

Navigation