Skip to main content
Log in

Process dynamics and thermodynamics of charged particle beams which remain equipartitioned

  • Plasma Physics
  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

This paper examines the process dynamics and thermodynamics of charged particle beams which remain equipartitioned. Considering a high-intensity ion beam in a space-charge dominated regime and with an initially large mismatched RMS beam size, we observe a fast increasing spatial anisotropy of the beam. Since space-charge interactions in a high-intensity linear accelerator can lead to energy equipartition between the degrees of freedom, this anisotropization phenomena suggest a kind of route to equipartition. In this paper we show that the particle-particle resonances and mode-particle resonances lead to the anisotropization of the beam, that is, both the envelope ratio and the emittance ratio are different from one. We propose that this anisotropy is responsible for the beam’s equipartitioning. The results suggest that the beam remains equipartitioned when it exhibits a macroscopic anisotropy, which is characterized by the following properties: the development of an elliptical shape with increasing size along a direction, the presence of a coupling between transversal emittances, halo formation along a preferential direction, stationarity of the temperature and a growth of the entropy in the cascade form. We call the state characterized by these properties as an anisotropic equipartition state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Jameson, PAC93 Proceedings, IEEE 3926 (1993)

  2. J. Lagniel, Nucl. Instrum. Methods 345, 46 (1994)

    Article  ADS  Google Scholar 

  3. J. Lagniel, Nucl. Instrum. Methods 345, 405 (1994)

    Article  ADS  Google Scholar 

  4. R.L. Gluckstern, Phys. Rev. Lett. 73, 1247 (1994)

    Article  ADS  Google Scholar 

  5. T.P. Wangler, K.R. Crandall, R. Ryne, T.S. Wang, Phys. Rev. ST Accel. Beams 1, 084201 (1998)

    Article  ADS  Google Scholar 

  6. R.L. Gluckstern, W.H. Cheng, H. Ye, Phys. Rev. Lett. 75, 2835 (1995)

    Article  ADS  Google Scholar 

  7. R.L. Gluckstern, W.H. Cheng, S. Kurennoy, H. Ye, Phys. Rev. E 54, 6788 (1996)

    Article  ADS  Google Scholar 

  8. Q. Qian, R.C. Davidson, Phys. Rev. E 53, 5349 (1996)

    Article  ADS  Google Scholar 

  9. H. Okamoto, M. Ikegami, Phys. Rev. E 55, 4694 (1997)

    Article  ADS  Google Scholar 

  10. M. Ikegami, Phys. Rev. E 59, 2330 (1999)

    Article  ADS  Google Scholar 

  11. A.V. Fedotov, I. Hofmann, R.L. Gluckstern, H. Okamoto, Phys. Rev. ST Accel. Beams 6, 094201 (2003)

    Article  ADS  Google Scholar 

  12. B.W. Montague, CERN-Report No. 68-38, CERN, 1968

  13. I. Hofmann, Phys. Rev. E 57, 4713 (1998)

    Article  ADS  Google Scholar 

  14. A.V. Fedotov, Nucl. Instrum. Methods 557, 216 (2006)

    Article  ADS  Google Scholar 

  15. M. Ikegami, Nucl. Instrum. Methods 435, 284 (1999)

    Article  ADS  Google Scholar 

  16. I. Hofmann, J. Qiang, R. Ryne, Phys. Rev. Lett. 86, 2313 (2001)

    Article  ADS  Google Scholar 

  17. I. Hofmann , Boine-Frankenheim, Phys. Rev. Lett. 87, 034802 (2001)

    Article  ADS  Google Scholar 

  18. G. Franchetti, I. Hofmann, D. Jeon, Phys. Rev. Lett. 88, 254802 (2002)

    Article  ADS  Google Scholar 

  19. R.A. Kishek , P.G. O’Shea , M. Reiser, Phys. Rev. Lett. 85, 4514 (2000)

    Article  ADS  Google Scholar 

  20. W. Simeoni Jr., F.B. Rizzato, R. Pakter, Phys. Plasmas 13, 063104 (2006)

    Article  ADS  Google Scholar 

  21. P.M. Lapostolle , IEEE Trans. Nucl. Sci. NS-18, 1101 (1971)

    Article  ADS  Google Scholar 

  22. J.M. Lagniel, S. Nath, EPAC98 Proceedings (1998), Vol. 1118

  23. T.P. Wangler, F.W. Guy, I. Hofmann, LINAC86 Proceedings (1986), Vol. 340

  24. R.A. Kishek, S. Bernal, P.G.O. Shea, M. Reiser, I. Haber, Nucl. Instrum. Methods 464, 484 (2001)

    Article  ADS  Google Scholar 

  25. C.L. Bohn, I.V. Sideris, Phys. Rev. ST Accel. Beams 6, 034203 (2003)

    Article  ADS  Google Scholar 

  26. H.E. Kandrup, I.M. Vass, I.V. Sideris, Mon. Not. R. Astron. Soc. 341, 927 (2003)

    Article  ADS  Google Scholar 

  27. H.E. Kandrup, C. Siopis, Mon. Not. R. Astron. Soc. 345, 745 (2003)

    Article  ADS  Google Scholar 

  28. E.A. Startsev, R.C. Davidson, H. Qin, Phys. Rev. ST Accel. Beams 8, 124201 (2005)

    Article  ADS  Google Scholar 

  29. J. Nycander, V.V. Yankov, Phys. Scr. T 63, 174 (1996)

    Article  ADS  Google Scholar 

  30. V.V. Yankov, J. Nycander, Phys. Plasmas 4, 2907 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  31. M.B. Isichenko, A.V. Gruzinov, P.H. Diamond, P.N. Yushmanov, Phys. Plasmas 3, 1916 (1996)

    Article  ADS  Google Scholar 

  32. H.E. Kandrup, Mon. Not. R. Astron. Soc. 299, 1139 (1998)

    Article  ADS  Google Scholar 

  33. F.J. Sacherer , IEEE Trans. Nucl. Sci. NS-18, 1105 (1971)

    Article  ADS  Google Scholar 

  34. P.M. Lapostolle, CERN AR/Int. SG/65-27, 1965

  35. R.C. Davidson, H. Qin, Physics of Intense Charged Particle Beams in High Energy Accelerators (World Scientific, Singapore, 2001)

  36. P.M. Lapostolle, A. Lombardi, T.P. Wangler, CERN/PS 93-11 (HI), 1993

  37. F. Neri, G. Rangarajan, Phys. Rev. Lett. 64, 1073 (1990)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. A. Dragt, F. Neri, G. Rangarajan, Phys. Rev. A 45, 2572 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  39. N. Piovella, A. Bourdier, P. Chaix, D. Iracane, EPAC94 Proceedings (1994), Vol. 1186

  40. M. Frigo, S.G. Johnson, Proc. IEEE 93, 216 (2005)

    Article  Google Scholar 

  41. I. Hofmann, G. Franchetti, J. Qiang, R.D. Ryne, EPAC04 Proceedings (2004), Vol. 1960

  42. S. Ohnuma, R.L. Gluckstern, IEEE Trans. Nucl. Sci. 32, 2261 (1985)

    Article  ADS  Google Scholar 

  43. G. Franchetti, I. Hofmann, M. Aslaninejad, Phys. Rev. Lett. 94, 194801 (2005)

    Article  ADS  Google Scholar 

  44. I. Hofmann, G. Franchetti, O. Boine-Frankenheim, Phys. Rev. ST Accel. Beams 6, 024202 (2003)

    Article  ADS  Google Scholar 

  45. M. Aslaninejad, I. Hofmann, Phys. Rev. ST Accel. Beams 6, 124202 (2003)

    Article  ADS  Google Scholar 

  46. I. Hofmann, PAC97 Proceedings (IEEE, 1997), Vol. 1852

  47. R.A. Jameson, IEEE Trans. Nucl. Sci. 28, 2408 (1981)

    Article  ADS  Google Scholar 

  48. L.M. Young, PAC97 Proceedings (1997), Vol. 1920

  49. I. Hofmann, IEEE Trans. Nucl. Sci. 28, 2399 (1981)

    Article  ADS  Google Scholar 

  50. I. Hofmann, G. Franchetti, Phys. Rev. ST Accel. Beams 9, 054202 (2006)

    Article  ADS  Google Scholar 

  51. R.L. Gluckstern , A.V Fedotov , Phys. Rev. ST Accel. Beams 2, 054201 (1999)

    Article  ADS  Google Scholar 

  52. M. Weiss, CERN/MPS/LIN 73-2, 1973

  53. K. Joh, J.A. Nolen, PAC93 Proceedings (IEEE, 1993), Vol. 71

  54. G. Franchetti, I. Hofmann, EPAC00 Proceedings (2000), Vol. 1292

  55. M. Reiser, Theory and Design of Charged Particle Beams (John Wiley and Sons, Inc., New York, 1994)

  56. A.M. Lyapunov, Stability of Motion (Academic Press, New York and London, 1966)

  57. S.V. Vaishampayan, K.C. Sharma, Indian J. Pure Appl. Math. 25, 785 (1994)

    MathSciNet  MATH  Google Scholar 

  58. D. Bambusi, Physica D 119, 47 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. M.W. Hirsch, S. Smale, Differential Equations Dynamical System and Linear Algebra (Academic Press, New York, 1974)

  60. T.D. Frank, Phys. Rev. ST Accel. Beams 9, 084401 (2006)

    Article  ADS  Google Scholar 

  61. R.A. Jameson, R.S. Mills, LANL report LA-UR-79-2541, 1979

  62. R.A. Jameson, LANL report LA-UR-81-3073, 1981

  63. Y. Elskens, Nucl. Instrum. Methods 561, 129 (2006)

    Article  ADS  Google Scholar 

  64. B. Gershgorin, Y.V. Lvov, D. Cai, Phys. Rev. E 75, 046603 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  65. V.E. Zakharov, V.S. Lvov, G. Falkovich, Kolmogorov Spectra of Turbulence (Springer-Verlag, Berlin, 1992)

  66. D. Lynden-Bell, Mon. Not. R. Astron. Soc. 136, 101 (1967)

    ADS  Google Scholar 

  67. B.B. Kadomtsev, O.P. Pogutse, Phys. Rev. Lett. 25, 1155 (1970)

    Article  ADS  Google Scholar 

  68. R.A. Kishek, C.L. Bohn, I. Haber, P.G.O. Shea, M. Reiser, H.E. Kandrup, PAC01 Proceedings (IEEE, 2001), p. 151

  69. N. Brown, M. Reiser, Phys. Plasmas 2, 965 (1995)

    Article  ADS  Google Scholar 

  70. M. Seurer, P.-G. Reinhard, C. Toepffer, Nucl. Instrum. Methods 351, 286 (1994)

    Article  ADS  Google Scholar 

  71. J. Struckmeier, Particle Accelerators 45, 229 (1994)

    Google Scholar 

  72. S. Tremaine, M. Hénon, D. Lynden-Bell, Mon. Not. R. Astron. Soc. 219, 285 (1986)

    ADS  MATH  Google Scholar 

  73. J.D. Lawson, P.M. Lapostolle, R.L. Gluckstern, Particle Accelerators 5, 61 (1973)

    Google Scholar 

  74. G.G. Howes, Phys. Plasmas 15, 055904 (2008)

    Article  ADS  Google Scholar 

  75. C.L. Bohn, J.R. Delayen, Phys. Rev. E 50, 1516 (1994)

    Article  ADS  Google Scholar 

  76. P.H. Chavanis, Physica A 361, 81 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  77. S.I. Tzenov, Fermilab-Pub-98/287, FERMILAB (1998)

  78. A. Mosnier, U. Ratzinger, Fus. Eng. Des. 83, 1001 (2008)

    Article  Google Scholar 

  79. R.A. Jameson, R. Ferdinand, H. Klein, J. Rathke, J. Sredniawski, M. Sugimoto, J. Nucl. Mater. 329, 193 (2004)

    Article  ADS  Google Scholar 

  80. P.A.P. Nghiem, N. Chauvin, O. Delferrière, R. Duperrier, A. Mosnier, D. Uriot, M. Comunian, C. Oliver, Proc. HB2010 (2010), Vol. 309

  81. M.K.H. Kiessling, J.L. Lebowitz, Phys. Plasmas 1, 1841 (1994)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Simeoni Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simeoni, W. Process dynamics and thermodynamics of charged particle beams which remain equipartitioned. Eur. Phys. J. D 63, 407–419 (2011). https://doi.org/10.1140/epjd/e2011-20132-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjd/e2011-20132-2

Keywords

Navigation