Skip to main content
Log in

Stationary self-consistent distributions for a charged particle beam in the longitudinal magnetic field

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

A review of analytical solutions of the Vlasov equation for a beam of charged particles is given. These results are analyzed on the basis of a unified approach developed by the authors. In the context of this method, a space of integrals of motion is introduced in which the integrals of motion of particles are considered as coordinates. In this case, specifying a self-consistent distribution is reduced to defining a distribution density in this space. This approach allows us to simplify the construction and analysis of different self-consistent distributions. In particular, it is possible, in some cases, to derive new solutions by considering linear combinations of well-known solutions. This approach also makes it possible in many cases to give a visual geometric representation of self-consistent distributions in the space of integrals of motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Vlasov, “On vibrational properties of an electron gas,” Zh. Eksp. Teor. Fiz. 8 (3), 291–318 (1938).

    Google Scholar 

  2. A. A. Vlasov, Many-Particle Theory and Its Application to Plasma (GITTL, Moscow–Leningrad, 1950; Gordon and Breach, New York, 1961).

    Google Scholar 

  3. R. Liboff, Introduction to the Theory of Kinetic Equations (Wiley, New York, 1969).

    MATH  Google Scholar 

  4. A. J. Lichtenberg, Phase Space Dynamics of Particles (Wiley, New York, 1969).

    MATH  Google Scholar 

  5. H. Neunzert, “An introduction to the nonlinear Boltzmann-Vlasov equation,” in Kinetic Theories and the Boltzmann Equation, Ed. by C. Cercignani, vol. 1048 of Lecture Notes in Mathematics (Springer-Verlag, Berlin, Heidelberg, 1984), pp. 60–110.

    Chapter  Google Scholar 

  6. R. C. Davidson, Theory of Nonneutral Plasmas (Benjamin, New York, 1974).

    Google Scholar 

  7. I. M. Kapchinskii, Particle Dynamics in Linear Resonance Accelerators (Atomizdat, Moscow, 1966) [in Russian].

    Google Scholar 

  8. I. M. Kapchinsky, Theory of Resonance Linear Accelerators (Energoizdat, Moscow, 1982; Harwood, New York, 1985).

    Google Scholar 

  9. J. D. Lawson, The Physics of Charged Particle Beams (Clarendon, Oxford, 1977).

    Google Scholar 

  10. I. N. Meshkov, Transport of Charged Particle Beams (Nauka Sibir. Otd., Novosibirsk, 1991) [in Russian].

    Google Scholar 

  11. A. S. Roshal’, Modeling of Charged Beams (Atomizdat, Moscow, 1979) [in Russian].

    Google Scholar 

  12. A. S. Chikhachev, Kinetic Theory of Quasistationary States of Charged Particle Beams (Fizmatlit, Moscow, 2001) [in Russian].

    Google Scholar 

  13. R. C. Davidson, Physics of Nonneutral Plasmas (Addison-Wesley Publishing Co., Reading, Massachusetts, 1990).

    Google Scholar 

  14. R. C. Davidson and H. Qin, Physics of Intense Charged Particle Beams in High Energy Accelerators (World Scientific, Singapore, 2001).

    Book  Google Scholar 

  15. M. Reiser, Theory and Design of Charged Particle Beams (John Wiley & Sons, New York, 1994).

    Book  Google Scholar 

  16. A. A. Arsen’ev, “Uniqueness and existence in the small of the classical solution of Vlasov’s system of equations,” Dokl. Akad. Nauk SSSR 218 (1), 11–12 (1974).

    MathSciNet  Google Scholar 

  17. A. A. Arsen’ev, “Existence and uniqueness of the classical solution of Vlasov’s system of equations,” USSR Comput. Math. Math. Phys. 15 (5), 252–258 (1975).

    Article  MathSciNet  MATH  Google Scholar 

  18. A. A. Arsen’ev, “Theorems of existence of solution of Cauchy problem for Vlasov’s system of equations,” in Numerical Methods in Plasma Physics, Ed. by A. A. Samarskii (Nauka, Moscow, 1977), pp. 26–31 [in Russian].

    Google Scholar 

  19. A. A. Arsen’ev, Lectures on Kinetic Equations (Nauka, Moscow, 1992) [in Russian].

    MATH  Google Scholar 

  20. S. V. Iordanskii, “The Cauchy problem for the kinetic equation of plasma,” in Trudy MIAN (Proceedings of the Mathematical Institute, Academy of Sciences of the USSR), vol. 60, pp.181–194 (Izd. Akad. Nauk SSSR, Moscow, 1961; Am.Math. Soc. Transl, Ser. 2, 35, 351–363, 1964).

    MathSciNet  Google Scholar 

  21. E. Horst, “On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation. I,” Math. Meth. Appl. Sci. 3, 229–248 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  22. E. Horst, “On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation. II,” Math. Meth. Appl. Sci. 4, 19–32 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Illner and H. Neunzert, “An existence theorem for the unmodified Vlasov equation,” Math. Meth. Appl. Sci. 1, 530–554 (1979).

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Ukai and T. Okabe, “On classical solutions in the large in time of two-dimensional Vlasov’s equation,” Osaka J. Math. 15 (2), 245–261 (1978).

    MathSciNet  MATH  Google Scholar 

  25. S. Wollman, “The spherically symmetric Vlasov–Poisson system,” J. Differ. Equations 35 (1), 30–35 (1980).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. S. Wollman, “Global-in-time solutions of the twodimensional Vlasov–Poisson system,” Comm. Pure. Appl. Math. 33, 173–197 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Wollman, “Existence and uniqueness theory of the Vlasov–Poisson system with application to the problem with cylindrical symmetry,” J. Math. Anal. Appl. 90 (1), 138–170 (1982).

    Article  MathSciNet  MATH  Google Scholar 

  28. I. M. Kapchinskij and V. V. Vladimirskij, “Limitations of proton beam current in a strong focusing linear accelerator, associated with beam space charge,” in Proc. of the II Int. Conf. on High Energy Accelerators (CERN, Geneva, 1959), pp. 274–288.

    Google Scholar 

  29. V. K. Plotnikov, “On focusing of intense electron beams by the longitudinal magnetic field,” Atomnaya Energiya 39 (5), 353–356 (1975).

    Google Scholar 

  30. I. Hoffmann, “Transport and focusing of high intensity unnetralized beams,” in Applied Charged Particle Optics, Ed. by A. Septier (Academic Press, New York, 1983), Part C, pp. 49–140.

    Google Scholar 

  31. O. I. Drivotin and D. A. Ovsyannikov, “Determination of the stationary solutions of the Vlasov equation for an axially symmetric beam of charged particle in a longitudinal magnetic field,” USSR Comput. Math. Math. Phys. 27 (2), 62–70 (1987).

    Article  Google Scholar 

  32. O. I. Drivotin and D. A. Ovsyannikov, “New classes of stationary solutions of Vlasov’s equation for axially symmetric beam of charged particles of constant density,” USSR Comput. Math. Math. Phys. 29 (4), 195–199 (1989).

    Article  MathSciNet  Google Scholar 

  33. O. I. Drivotin and D. A. Ovsyannikov, “On self-consistent distributions for a charged particle beam in a longitudinal magnetic field,” Dokl. Akad. Nauk 33 (3), 284–287 (1994).

    MathSciNet  MATH  Google Scholar 

  34. O. I. Drivotin and D. A. Ovsyannikov, Self-Consistent Distributions for Charged Particle Beams (S.-Peterb. Gos. Univ., St. Petersburg, 2001) [in Russian].

    MATH  Google Scholar 

  35. O. I. Drivotin and D. A. Ovsyannikov, Self-consistent distributions of charged particles in a longitudinal magnetic field. I, Vestn. S.-Peterb. Univ., Ser. 10: Prikl. Mat. Inform. Protsessy Upravlen., No. 1, 3–15 (2004).

    Google Scholar 

  36. O. I. Drivotin and D. A. Ovsyannikov, “Self-consistent distributions of charged particles in a longitudinal magnetic field. II,” Vestn. S.-Peterb. Univ., Ser. 10: Prikl. Mat. Inform. Protsessy Upravlen., No. 2, 70–81 (2004).

    Google Scholar 

  37. O. I. Drivotin and D. A. Ovsyannikov, Methods for Analysis of Self-consistent Distributions for Charged Particle Beams (Izd. VVM, St. Petersburg, 2013) [in Russian].

    MATH  Google Scholar 

  38. O. I. Drivotin and D. A. Ovsyannikov, “Solutions of the Vlasov equation for a charged particle beam in the magnetic field,” in Izv. Irkutsk. gos. univ. Ser. Matematika (Irkutsk. Gos. Univ., Irkutsk, 2013), Vol. 6, no. 4, pp. 2–22 [in Russian].

    MATH  Google Scholar 

  39. D. A. Ovsyannikov and O. I. Drivotin, Modeling of Intense Beams of Charged Particles (S.-Peterb. Gos. Univ., St. Petersburg, 2003) [in Russian].

    Google Scholar 

  40. O. I. Drivotin, “Covariant formulation of the Vlasov equation,” in Proc. 2nd Int. Particle Accelerator Conf. (IPAC’2011), San Sebastian, Spain, 2011, pp. 2277–2279. http:accelconf.web.cern.ch/accelconf/ipac2011/papers/wepc114.pdf.

    Google Scholar 

  41. O. I. Drivotin, “Degenerate solution of the Vlasov equation,” in Proc. of XXIII Russian Particle Accelerator Conf. (RuPAC’2012), St. Petersburg, Russia, 2012, pp. 376–378. http:accelconf.web.cern.ch/accelconf/rupac2012/papers/tuppb028.pdf.

    Google Scholar 

  42. O. I. Drivotin and D. A. Ovsyannikov, “New classes of uniform distributions for charged particles in magnetic field,” in Proc. 1997 Particle Accelerator Conf. (PAC’97), Vancouver, B.C., Canada, 1997, pp. 1943–1945.

    Google Scholar 

  43. O. I. Drivotin and D. A. Ovsyannikov, “Modeling of self-consistent distributions for longitudinally nonuniform beam,” Nuclear Instr. and Meth. Phys. Res. A 558 (1), 112–118 (2006).

    Article  ADS  Google Scholar 

  44. O. I. Drivotin and D. A. Ovsyannikov, “Self-consistent distributions for charged particle beam in magnetic field,” Int. J. Mod. Phys. A 24, 816–842 (2009).

    Article  ADS  MATH  Google Scholar 

  45. O. I. Drivotin and D. A. Ovsyannikov, “Exact solutions of the Vlasov equation in magnetic field,” in Proc. Linear Accelerator. Conf. (LINAC’2014), Geneva, Switzerland, 2014, pp. 377–380.

    Google Scholar 

  46. R. C. Davidson and C. Chen, “Kinetic description of high-intensity beam propagation through a periodic focusing field based on the nonlinear Vlasov–Maxwell equations,” Particle Accelerators 59, 175–250 (1998).

    Google Scholar 

  47. L. Brillouin, “A theorem of Larmor and its importance for electrons in magnetic fields,” Phys. Rev. 67, 260–266 (1945).

    Article  ADS  Google Scholar 

  48. R. C. Davidson and N. A. Krall, “Vlasov equilibria and stability of an electron gas,” Phys. Fluids 13, 1543–1555 (1970).

    Article  ADS  MATH  Google Scholar 

  49. L. D. Landau and E. M. Lifshits, The Classical Theory of Fields (Nauka, Moscow, 1967; Pergamon, Oxford, 1971).

    Google Scholar 

  50. O. I. Drivotin, Mathematical Basis of the Field Theory (S.-Peterb. Gos. Univ., St. Petersburg, 2010) [in Russian].

    Google Scholar 

  51. V. Danilov, S. Cousineu, S. Henderson, and J. Holmes, “Self-consistent time-dependent two-dimensional and three-dimensional space charge distributions with linear force,” Phys. Rev. ST Accel. Beams 6, 0942021–09420212 (2003).

    Google Scholar 

  52. O. I. Drivotin, “Reference Frames in Classical and Relativistic Physics” (2014). http:arxiv.org/pdf/1403.1787v1.pdf.

    Google Scholar 

  53. O. I. Drivotin, “Rigorous definition of the reference frame,” Vestn. S.-Peterb. Univ. Ser. 10: Prikl. Mat. Inform. Protsessy Upravlen., No. 4, 25–36 (2014).

    Google Scholar 

  54. D. D. Holm, J. E. Marsden, and T. S. Ratiu, “The Euler–Poincare equations and semidirect products with applications to continuum theories,” Adv. Math. 137, 1–81 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  55. J. Squire, H. Qin, W. M. Tang, and C. Chandre, “The Hamiltonian structure and Euler–Poincare formulation of the Vlasov–Maxwell and gyrokinetic systems,” Phys. Plasmas 20, 0225011–02250114 (2013).

    Article  Google Scholar 

  56. I. B. Bernstein, J. M. Greene, and M. D. Kruskal, “Exact nonlinear plasma oscillations,” Phys. Rev. 108, 546–550 (1957).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Yu. A. Budanov, “Phase density distribution in the sixdimensional phase space for intense ion beams,” Zh. Tekh. Fiz. 54, 1068–1075 (1984).

    Google Scholar 

  58. Yu. A. Budanov, “On phase density distribution in a beam with nonlinear transverse field of space charge,” in Proc. 10th All-Union Conf. on Charged Particle Accelerators, Dubna, 21–23 Oct. 1986 (OIYaI, Dubna, 1987), Vol. 1, pp. 444–445 [in Russian].

    Google Scholar 

  59. Yu. A. Budanov and V. I. Shvetsov, “On solutions to the Vlasov equation for a uniformly charged ellipsoidal bunch,” in Proc. 10th All-Union Conf. on Charged Particle Accelerators, Dubna, 21–23 Oct. 1986 (OIYaI, Dubna, 1987), Vol. 1, pp. 446–447 [in Russian].

    Google Scholar 

  60. R. C. Davidson, “Three-dimensional kinetic stability theorem for high-intensity charged particle beams,” Phys. Plasmas 5, 3459–3468 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  61. R. L. Gluckstern, A. V. Fedotov, S. Kurennoy, and R. Ryne, “Halo formation in three-dimensional bunches,” Phys. Rev. E 58, 4977–4990 (1998).

    Article  ADS  Google Scholar 

  62. A. D. Vlasov, “Self-consistent cylindrical beams with the constant density,” Zh. Tekh. Fiz. 49, 1821–1826 (1979).

    Google Scholar 

  63. C. Chen and R. C. Davidson, “Nonlinear properties of the Kapchinskij–Vladimirskij equilibrium and envelope equation for an intense charged particle beam in a periodic focusing field,” Phys. Rev. E 49, 5679–5687 (1994).

    Article  ADS  Google Scholar 

  64. R. C. Davidson, P. Stolz, and C. Chen, “Intense nonneutral beam propagation in a periodic solenoidal field using a macroscopic fluid model with zero thermal emittance,” Phys. Plasmas 4, 3710–3717 (1997).

    Article  ADS  Google Scholar 

  65. C. Chen, R. Pakter, and R. C. Davidson, “Rigid-rotor Vlasov equilibrium for an intense charged particle beam propagating through a periodic solenoidal magnetic field,” Phys. Rev. Lett. 79, 225–228 (1997).

    Article  ADS  Google Scholar 

  66. R. C. Davidson and C. Chen, “Kinetic description of intense nonneutral beam propagating through a periodic focusing field,” Nucl. Instrum. Meth. Phys. Res., A 415, 370 (1998).

    Article  ADS  Google Scholar 

  67. R. C. Davidson, H. Qin, and P. J. Channel “Approximate periodically focused solutions to the nonlinear Vlasov–Maxwell equations for intense beam propagation through alternating gradient field configuration,” Phys. Rev. ST Accel. Beams 2, 0744011–07440129 (1999).

    Google Scholar 

  68. C. Chen, R. Pakter, and R. C. Davidson, “Phase space structure for matched intense charged-particle beams in periodic focusing transport systems,” Phys. Plasmas 6, 3647–3657 (1999).

    Article  ADS  Google Scholar 

  69. R. C. Davidson and H. Qin, “Guiding-center Vlasov–Maxwell description of intense beam propagation through a periodic focusing field,” Phys. Rev. ST Accel. Beams 4, 1044011–10440113 (2001).

    Article  Google Scholar 

  70. J. Zhou and C. Chen, “Kinetic equilibrium of a periodically twisted ellipse-shaped charged particle beam,” Phys. Rev. ST Accel. Beams 9, 1042011–1042018 (2006).

    Google Scholar 

  71. R. L. Gluckstern, “Analytic model for halo formation in high-current ion linacs,” Phys. Rev. Lett. 73 (9), 1247–1250 (1994).

    Article  ADS  Google Scholar 

  72. R. L. Gluckstern, W.-H. Cheng, and H. Ye, “Stability of a uniform-density breathing beam with circular cross-section,” Phys. Rev. Lett. 75, 2835–2838 (1995).

    Article  ADS  Google Scholar 

  73. A. V. Fedotov, R. L. Gluckstern, S. Kurennoy, and R. Ryne, “Halo formation in three-dimensional bunches with various phase space distributions,” Phys. Rev. ST Accel. Beams 2, 0142011–01420112 (1999).

    Google Scholar 

  74. E. P. Lee and R. K. Cooper, “General envelope equation for cylindrically symmetric charged particle beams,” Particle Accelerators 7 (2), 83–95 (1976).

    Google Scholar 

  75. F. Saherer, “RMS envelope equations with space charge,” IEEE Trans. Nucl. Sci. 18, 1105–1108 (1971).

    Article  ADS  Google Scholar 

  76. J. R. Ray and J. L. Reid “More exact invariants for the time-dependent harmonic oscillator,” Phys. Lett. A 71, 317–318 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  77. E. D. Courant and H. S. Snyder, “Theory of the alternating-gradient synchrotron,” Ann. Phys. 3, 1–48 (1958).

    Article  ADS  MATH  Google Scholar 

  78. V. P. Ermakov, “Second-order differential equations. Conditions for integrability in closed form,” in Univ. Izv. (Kiev, 1880), Vol. 20, No. 9, pp. 1–25 [in Russian].

    Google Scholar 

  79. H. R. Lewis and P. G. Leach, “A direct approach to finding exact invariants for one-dimensional timedependent classical Hamiltonians,” J. Math. Phys. 23, 2371–2374 (1982).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  80. O. I. Drivotin, V. S. Kabanov, and D. A. Ovsyannikov, “On minimization of the amplitude of radius oscillations of an intense beam in a longitudinal magnetic field,” in Matematicheskie metody modelirovaniya i analiza upravlyaemykh protsessov (Mathematical Methods for Simulation and Analysis of Controlled Processes) (Leningr. Gos. Univ., Leningrad, 1989) [in Russian].

    Google Scholar 

  81. D. A. Ovsyannikov, “On dynamics of charged particles in a longitudinal magnetic field,” Zh. Tekh. Fiz. 85, 1879–1880 (1985).

    Google Scholar 

  82. D. A. Ovsyannikov, Simulation and Optimization of Dynamics of Charged Particle Beams (Leningr. Gos. Univ., Leningrad, 1990) [in Russian].

    MATH  Google Scholar 

  83. D. A. Ovsyannikov and N. V. Egorov, Mathematical Simulation of Systems for Forming the Electron and Ion Beams (S.-Peterb. Gos. Univ., St. Petersburg, 1998) [in Russian].

    Google Scholar 

  84. D. A. Ovsyannikov, A. D. Ovsyannikov, M. F. Vorogushin, Yu. A. Svistunov, and A. P. Durkin, “Beam dynamics optimization: Models, methods and applications,” Nucl. Instr. Meth. Phys. Res. A 558, 11–19 (2006).

    Article  ADS  Google Scholar 

  85. D. A. Ovsyannikov, A. D. Ovsyannikov, and S.-L. Chung, “Optimization of a radial matching section,” Int. J. Mod. Phys. A 24, 952–958 (2009).

    Article  ADS  Google Scholar 

  86. A. D. Ovsyannikov, D. A. Ovsyannikov, A. P. Durkin, and Sh.-L. Chang, “Optimization of matching section of an accelerator with a spatially uniform quadrupole focusing,” Tech. Phys. 54, 1663–1666 (2009).

    Article  Google Scholar 

  87. D. A. Ovsyannikov and V. V. Altsybeev, “Mathematical optimization model for alternating phase focusing (APF) linac,” Vopr. At. Nauki Tekh., No. 4, 93 (2013).

    Google Scholar 

  88. A. D. Ovsyannikov, D. A. Ovsyannikov, V. V. Altsybeev, A. P. Durkin, and V. G. Papkovich, “Application of optimization techniques for RFQ design,” Vopr. At. Nauki Tekh. 91 (3), 116 (2014).

    Google Scholar 

  89. A. A. Samarskii, “On some problems of theory of differential equations,” Dif. Uravneniya 16, 1925–1955 (1980).

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Drivotin.

Additional information

Original Russian Text © O.I. Drivotin, D.A. Ovsyannikov, 2016, published in Fizika Elementarnykh Chastits i Atomnogo Yadra, 2016, Vol. 47, No. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drivotin, O.I., Ovsyannikov, D.A. Stationary self-consistent distributions for a charged particle beam in the longitudinal magnetic field. Phys. Part. Nuclei 47, 884–913 (2016). https://doi.org/10.1134/S1063779616050038

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779616050038

Navigation