Skip to main content
Log in

Droplets on liquids and their journey into equilibrium

  • Regular Article
  • Published:
The European Physical Journal E Aims and scope Submit manuscript

Abstract

The morphological path of droplets on a liquid substrate towards equilibrium is investigated experimentally and theoretically. The droplets emerge in the late stage of a dewetting process of short chained polystyrene (PS) dewetting from liquid polymethyl-methacrylate (PMMA). The three-dimensional droplet profiles are obtained experimentally by combining the in situ imaged PS/air interface during equilibration and the ex situ imaged PS/PMMA interface after removal of the PS by a selective solvent. Numerically the transient drop shapes are calculated by solving the thin-film equation in lubrication approximation using the experimentally determined input parameter like viscosity, film thickness and surface tensions. The numerically obtained droplet morphologies and time scales agree very well with the experimental drop shapes. An unexpected observation is that droplets with identical volumes synchronise their motion and become independent of the initial geometry long time before equilibrium is reached.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y.L. Zhang, O.K. Matar, R.V. Craster, J. Colloid Interface Sci. 262, 130 (2003)

    Article  Google Scholar 

  2. Y.L. Zhang, O.K. Matar, R.V. Craster, Nat. Mater. 4, 782 (2005)

    Article  ADS  Google Scholar 

  3. R.A. Segalman, P.F. Green, Macromolecules 32, 801 (1999)

    Article  ADS  Google Scholar 

  4. D. Slep, J. Asselta, M.H. Rafailovich, J. Sokolov, D.A. Winesett, A.P. Smith, H. Ade, S. Anders, Langmuir 16, 2369 (2000)

    Article  Google Scholar 

  5. P. Lambooy, K.C. Phelan, O. Haugg, G. Krausch, Phys. Rev. Lett. 76, 1110 (1996)

    Article  ADS  Google Scholar 

  6. C. Wang, G. Krausch, M. Geoghegan, Langmuir 17, 6269 (2001)

    Article  Google Scholar 

  7. F. Brochard-Wyart, P. Martin, C. Redon, Langmuir 9, 3682 (1993)

    Article  Google Scholar 

  8. Q. Pan, K.I. Winey, H.H. Hu, R.J. Composto, Langmuir 13, 1758 (1997)

    Article  Google Scholar 

  9. Y. Li, Y. Yang, F. Yu, L. Dong, J. Polym. Sci. Part B: Polym. Phys. 44, 9 (2005)

    Article  ADS  MATH  Google Scholar 

  10. C. Neto, Phys. Chem. Chem. Phys. 9, 149 (2006)

    Article  Google Scholar 

  11. A.M. Higgins, M. Sferrazza, R.A.L. Jones, P.C. Jukes, J.S. Sharp, L.E. Dryden, J. Webster, Eur. Phys. J. E 8, 137 (2002)

    Article  Google Scholar 

  12. J.P. de Silva, M. Geoghegan, A.M. Higgins, G. Krausch, M.O. David, G. Reiter, Phys. Rev. Lett. 98, 267802 (2007)

    Article  ADS  Google Scholar 

  13. A. Pototsky, M. Bestehorn, D. Merkt, U. Thiele, Phys. Rev. E 70, 025201 (2004)

    Article  ADS  Google Scholar 

  14. R.V. Craster, O.K. Matar, J. Colloid Interface Sci. 303, 503 (2006)

    Article  Google Scholar 

  15. J.J. Kriegsmann, M.J. Miksis, SIAM J. Appl. Math. 64, 18 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. L.S. Fisher, A.A. Golovin, J. Colloid Interface Sci. 291, 515 (2005)

    Article  Google Scholar 

  17. A. Pototsky, M. Bestehorn, D. Merkt, U. Thiele, J. Chem. Phys. 122, 224711 (2005)

    Article  ADS  Google Scholar 

  18. J.D. McGraw, T. Salez, O. Bäumchen, E. Raphaë, Phys. Rev. Lett. 109, 128303 (2012) DOI:10.1103/PhysRevLett.109.128303

    Article  ADS  Google Scholar 

  19. T. Salez, J.D. McGraw, S.L. Cormier, O. Bäumchen, K. Dalnoki-Veress, E. Raphaë, Eur. Phys. J. E 35, 1 (2012)

    Article  Google Scholar 

  20. S. Herminghaus, K. Jacobs, R. Seemann, Eur. Phys. J. E 5, 531 (2001)

    Article  Google Scholar 

  21. O. Bäumchen, R. Fetzer, M. Klos, M. Lessel, L. Marquant, H. Hähl, K. Jacobs, J. Phys.: Condens. Matter 24, 325102 (2012)

    Google Scholar 

  22. A.N. Morozov, W. van Saarloos, Phys. Rep. 447, 112 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  23. P. Lomellini, Polymer 33, 1255 (1992)

    Article  Google Scholar 

  24. G.K. Batchelor, An Introduction to Fluid Dynamics (Cambridge University Press, 2000)

  25. H. Minkowski, Kapillarität, in Enzyklopädie der mathematischen Wissenschaften (1906)

  26. K.D. Danov, V.N. Paunov, N. Alleborn, H. Raszillier, F. Durst, Chem. Engin. Sci. 53, 2809 (1998)

    Article  Google Scholar 

  27. S. Jachalski, R. Huth, G. Kitavtsev, D. Peschka, B. Wagner, SIAM J. Appl. Math. 73, 1183 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  28. D.W. van Krevelen, Properties of Polymers: Their Estimation and Correlation with Chemical Structure (Elsevier Scientific Publ., 1976)

  29. J. Brandrup (Editor) Polymer Handbook, Vol. 1 (Wiley-Interscience, 2004)

  30. S.H. Anastasiadis, I. Gancarz, J.T. Koberstein, Macromolecules 21, 2980 (1988)

    Article  ADS  Google Scholar 

  31. S. Wu, J. Phys. Chem. 74, 632 (1970)

    Article  Google Scholar 

  32. F.E. Neumann, Vorlesung über die Theorie der Capillarität (BG Teubner, Leipzig, 1894) pp. 113--116

  33. R. Zhao, C.W. Macosko, J. Rheol. 46, 145 (2002)

    Article  ADS  Google Scholar 

  34. K. Jacobs, R. Seemann, G. Schatz, S. Herminghaus, Langmuir 14, 4961 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bommer, S., Cartellier, F., Jachalski, S. et al. Droplets on liquids and their journey into equilibrium. Eur. Phys. J. E 36, 87 (2013). https://doi.org/10.1140/epje/i2013-13087-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epje/i2013-13087-x

Keywords

Navigation