Skip to main content

Drop Impact Dynamics of Newtonian and Non-Newtonian Liquids

  • Chapter
  • First Online:
Droplet and Spray Transport: Paradigms and Applications

Part of the book series: Energy, Environment, and Sustainability ((ENENSU))

  • 1826 Accesses

Abstract

A droplet impinging on a solid substrate can result in liquid spreading, recoil, column formation/breakup, partial or complete rebound, or splash. These outcomes are governed by liquid density, viscosity, and surface tension along with surface wettability and roughness. This chapter discusses the recent developments in modeling Newtonian drop spread-recoil dynamics on a solid surface and provides a review of post-impact drop–surface interactions for aqueous surfactant and polymeric solutions. In aqueous solutions, surfactant molecules diffuse toward interfaces and are adsorbed there. As a result, the liquid–gas interfacial tension changes with surface age and the equilibrium tension is a function of surfactant concentration. The timescale of droplet deformation is often comparable to the timescale of surface tension relaxation of surfactant solutions which affects the surface deformation, spread-recoil oscillations, and column breakup. Furthermore, physisorption of surfactant molecules on the substrate alters its wettability and affects the spread-recoil phenomena. Aqueous polymeric solutions exhibit non-Newtonian viscous behavior, where their apparent viscosity is a function of the shear rate. The complex interplay between dynamic changes in interfacial properties and liquid deformation produces drop spread-recoil dynamics that is vastly different from their pure, Newtonian counterparts. Over last two decades, high-speed videography, computational simulations, and analytical modeling have provided useful understanding of droplet impact phenomena that unfolds over timescales of milliseconds or less for these complex fluids. Current understanding of the effect of dynamic changes in interfacial properties on the outcomes of droplet impact is presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • An SM, Lee SY (2012a) Maximum spreading of a shear-thinning liquid drop impacting on dry solid surfaces. Exp Therm Fluid Sci 38:140–148

    Article  Google Scholar 

  • An SM, Lee SY (2012b) Observation of the spreading and receding behavior of a shear-thinning liquid drop impacting on dry solid surfaces. Exp Therm Fluid Sci 37:37–45

    Article  Google Scholar 

  • Andrade R, Skurtys O, Osorio F (2015) Development of a new method to predict the maximum spread factor for shear thinning drops. J Food Eng 157:70–76

    Article  Google Scholar 

  • Asai A, Shioya M, Hirasawa S, Okazaki T (1993) Impact of an ink drop on paper. J Imaging Sci Technol 37:205–207

    Google Scholar 

  • Attane P, Girard F, Morin V (2007) An energy balance approach of the dynamics of drop impact on a solid surface. Phys Fluids 19(1):012101

    Article  Google Scholar 

  • Aytouna M, Bartolo D, Wegdam G, Bonn D, Rafai D (2010) Impact dynamics of surfactant laden drops: dynamic surface tension effects. Exp Fluids 48:49–57

    Article  Google Scholar 

  • Bartolo D, Boudaoud A, Narcy G, Bonn D (2007) Dynamics of non-Newtonian droplets. Phys Rev Lett 99:174502

    Article  Google Scholar 

  • Bennett T, Poulikakos D (1993) Splat-quench solidification—estimating the maximum spreading of a droplet impacting a solid-surface. J Mater Sci 28(4):963–970

    Article  Google Scholar 

  • Bergeron V, Bonn D, Martin JY, Vovelle L (2000) Controlling droplet deposition with polymer additives. Nature 405:772–775

    Article  Google Scholar 

  • Bhatia R, Manglik RM, Jog MA (2011) Experimental evaluation of the effects of concentration and temperature on rheological properties of aqueous solutions of hydroxyethylcellulose. In: Proceedings of the 21st National & 10th ISHMT-ASME Heat and Mass Transfer Conference, Paper No. ISHMT_USA_017, IIT Madras, Chenai, India

    Google Scholar 

  • Bird RB, Armstrong RC, Hassager O (1987) Dynamics of polymeric liquids. In: Fluid mechanics, vol 1, 2nd edn. Wiley, New York, NY

    Google Scholar 

  • Birdi KS (ed) (2003) Handbook of surface and colloid chemistry. CRC Press, New York, NY

    Google Scholar 

  • Bisgaard H, O’Callaghan C, Smaldone GC (eds) (2002) Drug delivery to the lung. Marcel Dekker, New York, NY

    Google Scholar 

  • Bolleddula DA, Berchielli A, Aliseda A (2010) Impact of a heterogeneous liquid droplet on a dry surface: application to the pharmaceutical industry. Adv Coll Interface Sci 159:144–159

    Article  Google Scholar 

  • Boyer F, Sandoval-Nava E, Snoeijer JH, Dijksman JF, Lohse D (2016) Drop impact of shear thickening liquids. Phys Rev Fluids 1:013901

    Article  Google Scholar 

  • Bussman M, Mostaghimi J, Chandra S (1999) On the three-dimensional volume-tracking model of droplet impact. Phys Fluids 11:1406–1417

    Article  Google Scholar 

  • Carre A, Eustache F (2000) Spreading kinetics of shear-thinning fluids in wetting and dewetting modes. Langmuir 16:2936–2941

    Article  Google Scholar 

  • Chandra S, Avedisian CT (1991) On the collision of a droplet with a solid-surface. Proc R Soc A Math Phys Sci 432:13–41

    Article  Google Scholar 

  • Chang C-H, Franses EI (1995) Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms. Colloids Surf A 100:1–45

    Article  Google Scholar 

  • Clanet C, Beguin C, Richard D, Quere D (2004) Maximal deformation of an impacting drop. J Fluid Mech 517:199–208

    Article  Google Scholar 

  • Collings EW, Markworth AJ, McCoy JK, Saunders JH (1990) Splat-quench solidification of freely falling liquid-metal drops by impact on a planar substrate. J Mater Sci 25:3677–3682

    Article  Google Scholar 

  • Cooper-White JJ, Crooks RC, Boger DV (2002) A drop impact study of worm-like viscoelastic surfactant solutions. Colloid Surf A Physicochem Eng Aspects 210:105–123

    Article  Google Scholar 

  • Cossali GE, Coghe A, Marengo M (1997) The impact of a single drop on a wetted solid surface. Exp Fluids 22(6):463–472

    Article  Google Scholar 

  • Crooks R, Cooper-Whitez J, Boger DV (2001) The role of dynamic surface tension and elasticity on the dynamics of drop impact. Chem Eng Sci 56:5575–5592

    Article  Google Scholar 

  • Ding H, Spelt PDM (2007) Inertial effects in droplet spreading: a comparison between diffuse-interface and level-set simulations. J Fluid Mech 576:287–296

    Article  Google Scholar 

  • Dong HM, Carr WW, Bucknall DG, Morris JF (2007) Temporally-resolved inkjet drop impaction on surfaces. AIChE J 53(10):2606–2617

    Article  Google Scholar 

  • Eggers J, Fontelos MA, Josserand C, Zaleski S (2010) Drop dynamics after impact on a solid wall: theory and simulations. Phys Fluids 22:062101

    Article  Google Scholar 

  • Fuerstenau DW (2002) Equilibrium and nonequilibrium phenomena associated with the adsorption of ionic surfactants at solid-water interfaces. J Colloid Interface Sci 256:79–90

    Article  Google Scholar 

  • Fukai J, Shiiba Y, Yamamoto T, Miyatake O, Poulikakos D, Megaridis CM, Zhao Z (1993) Modeling of the deformation of a liquid droplet impinging upon a flat surface. Phys Fluids A Fluid Dyn 5(11):2588–2599

    Article  Google Scholar 

  • Fukai J, Shiiba Y, Yamamoto T, Miyatake O, Poulikakos D, Megaridis CM, Zhao Z (1995) Wetting effects on the spreading of a liquid droplet colliding with a flat surface: experiment and modeling. Phys Fluids 7:236–247

    Article  Google Scholar 

  • Gatne KP, Jog MA, Manglik RM (2006) Experimental investigation of droplet impact dynamics on solid surfaces, TFTPL-G1. Thermal-Fluids & Thermal Processing Laboratory, University of Cincinnati, Cincinnati, OH

    Google Scholar 

  • Gatne KP, Manglik RM, Jog MA (2007) Visualization of fracture dynamics of droplet recoil on hydrophobic surface. J Heat Transfer 129:931

    Article  Google Scholar 

  • Gatne KP, Jog MA, Manglik RM (2009) Surfactant-induced modification of low weber number droplet impact dynamics. Langmuir 25:8122–8130

    Article  Google Scholar 

  • German G, Bertola V (2009) Impact of shear-thinning and yield-stress drops on solid substrates. J Phys Condens Matter 21:375111

    Article  Google Scholar 

  • Girard F, Attane P, Morin V (2006) A new analytical model for impact and spreading of one drop: application to inkjet printing. Tappi J 5(12):24–32

    Google Scholar 

  • Gong SC (2005) Spreading of droplets impacting on smooth solid surface. Jpn J Appl Phys 44(5A):3323–3324

    Article  Google Scholar 

  • Gunjal PR, Ranade VV, Chaudhari RV (2005) Dynamics of drop impact on solid surfaces: experiments and VOF simulations. AIChE J 51:59–79

    Article  Google Scholar 

  • Healy WM, Hartley JG, Abdel-Khalik SI (1996) Comparison between theoretical models and experimental data for the spreading of liquid droplets impacting on a solid surface. Int J Heat Mass Transf 39:3079–3082

    Article  Google Scholar 

  • Holmberg K, Jönsson B, Kronberg B, Lindman B (2003) Surfactants and polymers in aqueous solution. Wiley, New York, NY

    Google Scholar 

  • Huh HK, Jung S, Seo K-W, Lee SJ (2015) Role of polymer concentration and molecular weight on the rebounding behaviors of polymer solution droplet impacting on hydrophobic surfaces. Microfluid Nanofluid 18:1221–1232

    Article  Google Scholar 

  • Jia W, Qiu HH (2003) Experimental investigation of droplet dynamics and heat transfer in spray cooling. Exp Therm Fluid Sci 27:829–838

    Article  Google Scholar 

  • Jog MA, Manglik RM (2010) Experimental investigation of low weber number post-impact drop spreading on solid substrates. In: Proceedings of the 14th international heat transfer conference, IHTC14-2010. Paper Number IHTC14-23251, Washington, DC, 8–13 August 2010

    Google Scholar 

  • Jones H (1971) Cooling, freezing and substrate impact of droplets formed by rotary atomization. J Phys D Appl Phys 4:1657–1660

    Article  Google Scholar 

  • Josserand C, Thoroddsen ST (2016) Drop impact on a solid surface. Ann Rev Fluid Mech 48:365–391

    Article  MathSciNet  Google Scholar 

  • Jung S, Hoath SD, Hutchings I (2013) The role of viscoelasticity in drop impact and spreading for inkjet printing of polymer solution on a wettable surface. Microfluid Nanofluid 14:163–169

    Article  Google Scholar 

  • Luu L-H, Forterre Y (2009) Drop impact of yield-stress fluids. J Fluid Mech 632:301–327

    Article  Google Scholar 

  • Lyklema J (1991) Fundamentals of interface and colloid science. Academic Press, London, UK

    Google Scholar 

  • Madejski J (1976) Solidification of droplets on a cold surface. Int J Heat Mass Transf 19:1009–1013

    Article  Google Scholar 

  • Manglik RM, Jog MA, Gande S, Ravi V (2013) Damped harmonic system modeling of post-impact drop-spread dynamics on a hydrophobic surface. Phys Fluids 25(8):082112

    Article  Google Scholar 

  • Manglik RM, Wasekar VM, Zhang J (2001) Dynamic and equilibrium surface tension of aqueous surfactant and polymeric solutions. Exp Thermal Fluid Sci 25:55–64

    Article  Google Scholar 

  • Mao T, Kuhn DCS, Tran H (1997) Spread and rebound of liquid droplets upon impact on flat surfaces. AIChE J 43:2169–2179

    Article  Google Scholar 

  • Moita AS, Herrmann D, Moreira ALN (2015) Fluid dynamic and heat transfer processes between solid surfaces and non-Newtonian liquid droplets. Appl Therm Eng 88:33–46

    Article  Google Scholar 

  • Mourougou-Candoni N, Prunet-Foch B, Legay F, Vignes-Alder M (1999) Retraction phenomena of surfactant solution drops upon impact on a solid substrate of low surface engery. Langmuir 15:6563–6574

    Article  Google Scholar 

  • Mourougou-Candoni N, Prunet-Foch B, Legay F, Vignes-Alder M, Wong K (1997) Influence of dynamic surface tension on the spreading of surfactant solution droplets impacting onto a low-surface-energy solid substrate. J Colloid Interface Sci 192:129–141

    Article  Google Scholar 

  • Mundo C, Sommerfeld M, Tropea C (1995) Droplet-wall collisions—experimental studies of the deformation and breakup process. Int J Multiph Flow 21(2):151–173

    Article  Google Scholar 

  • Nieh S, Ybarra RM, Neogi P (1996) Wetting kinetics of polymer solutions. Exp obs Macromol 29:320–325

    Article  Google Scholar 

  • Neogi P, Ybarra RM (2001) The absence of a rheological effect on the spreading of small drops. J Chem Phys 115:7811–7813

    Article  Google Scholar 

  • Okumura K, Chevy F, Richard D, Quere D, Clanet C (2003) Water spring: a model for bouncing drops. Europhys Lett 62(2):237–243

    Article  Google Scholar 

  • Park H, Carr WW, Zhu J, Morris JF (2003) Single drop impaction on a solid surface. AIChE J 49(10):2461–2471

    Article  Google Scholar 

  • Pasandideh-Fard M, Qiao YM, Chandra S, Mostaghimi J (1996) Capillary effects during droplet impact on a solid surface. Phys Fluids 8:650–658

    Article  Google Scholar 

  • Rafai S, Bonn D, Boudaoud A (2004) Spreading of non-Newtonian fluids on hydrophilic surfaces. J Fluid Mech 513:77–85

    Article  Google Scholar 

  • Ramsey RJL, Stephenson GR, Hall JC (2005) A review of the effects of humidity, humectants, and surfactant composition on the absorption and efficacy of highly water-soluble herbicides. Pestic Biochem Physiol 82:162–175

    Article  Google Scholar 

  • Ravi V, Jog MA, Manglik RM (2010) Effects of interfacial and viscous properties of liquids on drop spread dynamics. In: Proceedings of the 22nd Annual Meeting of the Institute of Liquid Atomization and Spray Systems, Paper Number ILASS2010-0142. Cincinnati, OH, 16–19 May 2010

    Google Scholar 

  • Ravi V, Jog MA, Manglik RM (2013) Effects of pseudoplasticity on spread and recoil dynamics of aqueous polymeric solution droplets on solid surfaces. Interfacial Phenom Heat Trans 1(3):273–287

    Article  Google Scholar 

  • Ribeiro ACF, Lobo VMM, Azevedo EFG, Miguel MG, Burrows HD (2003) Diffusion coefficients of sodium dodecylsulfate in aqueous solutions and in aqueous solutions of beta-cyclodextrin. J Mol Liq 102:285–292

    Article  Google Scholar 

  • Richard D, Quere D (2000) Bouncing water drops. Europhys Lett 50(6):769–775

    Article  Google Scholar 

  • Rioboo R, Marengo M, Tropea C (2001) Outcomes from a drop impact on solid surfaces. Atomization Sprays 11:155–165

    Article  Google Scholar 

  • Rioboo R, Marengo M, Tropea C (2002) Time evolution of liquid drop impact onto solid, dry surfaces. Exp Fluids 33(1):112–124

    Article  Google Scholar 

  • Roisman IV, Rioboo R, Tropea C (2002) Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc R Soc A458:1411–1430

    Article  Google Scholar 

  • Roisman IV, Berberovic E, Tropea C (2009) Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys Fluids 21(5):052103

    Article  Google Scholar 

  • Roisman IV (2009) Inertia dominated drop collisions. II. An analytical solution of the Navier-Stokes equations for a spreading viscous film. Phys Fluids 21(5):052104

    Article  Google Scholar 

  • Rosen MJ (2004) Surfactants and interfacial phenomena, 3rd edn. Wiley-Interscience, Hoboken, NJ

    Google Scholar 

  • Saidi A, Martin C, Magnin A (2011) Effects of surface properties on the impact process of a yield stress fluid drop. Exp Fluids 51:211–224

    Article  Google Scholar 

  • Sanjeev A, Gatne KP, Manglik RM, Jog MA (2007) Experiments and simulations of spreading, impact, and recoil of surfactant solution droplets on a hydrophobic surface. In: Proceedings of 20th Annual Meeting of the Institute for Liquid Atomization of Spray Systems. Chicago, IL, May 2007

    Google Scholar 

  • Sanjeev A, Huzayyin O, Gatne KP, Manglik RM, Jog MA (2008a) Short time impact and cooling of water droplets impinging on hydrophobic and hydrophilic surfaces. J Heat Trans 130(8): 080903-1

    Article  Google Scholar 

  • Sanjeev A, Jog MA, Manglik RM (2008b) Computational simulation of surfactant-induced interfacial modification of droplet impact and heat transfer. In: Proceedings of the 21st Annual Meeting of the Institute for Liquid Atomization of Spray Systems. Orlando, FL, 18–21 May

    Google Scholar 

  • Scheller BL, Bousfield DW (1995) Newtonian drop impact with a solid-surface. AIChE J 41(6):1357–1367

    Article  Google Scholar 

  • Schonhorn H, Frisch HL, Kwei TK (1966) Kinetics of wetting of surfaces by polymer melts. J Appl Phys 37:4967–4973

    Article  Google Scholar 

  • Šikalo Š, Ganiç EN (2006) Phenomena of droplet-surface interaction. Exp Therm Fluid Sci 31:97–110

    Article  Google Scholar 

  • Šikalo Š, Marengo M, Tropea C, Ganiç EN (2002) Analysis of impact of droplets on horizontal surfaces. Exp Therm Fluid Sci 25:503–510

    Article  Google Scholar 

  • Sikalo S, Wilhelm HD, Roisman IV, Jakirlic S, Tropea C (2005) Dynamic contact angle of spreading droplets: experiments and simulations. Phys Fluids 17 (6): 062101, 062103, 062112

    Article  Google Scholar 

  • Somasundaran P, Krishnakumar S (1997) Adsorption of surfactants and polymers at the solid-liquid interface. Colloids Surf A 123–124:491–513

    Article  Google Scholar 

  • Tugrul T, Cansunar E (2005) Detecting surfactant-producing microorganisms by the drop-collapse test. World J Microbiol Biotechnol 21:851–853

    Article  Google Scholar 

  • Ukiwe C, Kwok KY (2005) On the maximum spreading diameter of impacting droplets on well-prepared solid surfaces. Langmuir 21:666–673

    Article  Google Scholar 

  • van Dam DB, Le Clerc C (2004) Experimental study of the impact of an ink-jet printed droplet on a solid substrate. Phys Fluids 16(9):3403–3414

    Article  Google Scholar 

  • Wang X, Chen L, Bonaccurso E (2015) Comparison of spontaneous wetting and drop impact dynamics of aqueous surfactant solutions on hydrophobic polypropylene surfaces: scaling of the contact radius. Colloid Polym Sci 293:257–265

    Article  Google Scholar 

  • Wang F, Fang T (2017) Oscillatory behavior of droplet impacting on hydrophilic surface. In: Proceedings of the ILASS-Americas 29th annual conference on liquid atomization and spray systems. Atlanta, GA, May 2017

    Google Scholar 

  • Worthington A (1876) On the forms assumed by drops of liquids falling vertically on a horizontal plate. Proc R Soc Lond 25(171–178):261–272

    Article  Google Scholar 

  • Yarin AL (2006) Drop impact dynamics: splashing, spreading, receding, bouncing. Annu Rev Fluid Mech 38:159–192

    Article  MathSciNet  Google Scholar 

  • Zhang J, Manglik RM (2005) Additive adsorption and interfacial characteristics of nucleate pool boiling in aqueous surfactant solutions. J Heat Trans 127:684–691

    Article  Google Scholar 

  • Zhang X, Basaran OA (1997) Dynamic surface tension effects in impact of a drop with a solid surface. J Colloid Interface Sci 187:166–178

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank A. Athavale, R. Bhatia, S. Gande, K. Gatne, K.-T. Lin, A. Raghuram, S. Rajendran, V. Ravi, and D. Shi for providing data, help with figures, and many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milind A. Jog .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jog, M.A., Manglik, R.M. (2018). Drop Impact Dynamics of Newtonian and Non-Newtonian Liquids. In: Basu, S., Agarwal, A., Mukhopadhyay, A., Patel, C. (eds) Droplet and Spray Transport: Paradigms and Applications. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-10-7233-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7233-8_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7232-1

  • Online ISBN: 978-981-10-7233-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics